首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Otto L. Lange 《Oecologia》1980,45(1):82-87
Summary Net photosynthesis (10 klx light intensity, 150 E m-2 s-1 PAR) and dark respiration of the lichen Ramalina maciformis at different temperatures are measured in relation to thallus water content. Both first increase with increasing hydration. Dark respiration then remains constant with increased water content until thallus saturation. In contrast, a further increase in water content leads to a depression of net photosynthesis, as shown in previous studies, after a maximum of CO2 uptake has been attained. However, the extent of this depression depends strongly on temperature. In saturated thalli (160% water content in relation to lichen dry weight) the depression amounts to about 15% and 63% of the maximum unsaturated rate at 5°C and 25°C thallus temperature, respectively. The moisture compensation-point of net photosynthesis is also decisively determined by temperature (for 0°C at 20% water content; for 25°C at 15%), and the water content that allows maximum rates of CO2 uptake (for 0°C at 80%; for 25°C at less than 40% water content). An electrical analogue of CO2 exchange in a lichen thallus is presented, and it is suggested that the experimental results may be interpreted in terms of temperature-dependent CO2 diffusion resistances in imbibed lichen thalli.  相似文献   

2.
In an attempt to ascertain whether the lichen Ramalina duriaei could be employed to biomonitor atmospheric lead pollution, specimens of this lichen were exposed to Pb (NO3)2 solutions and a buffered solution (tartaric acid/sodium bitartrate, pH 2.8) of sodium rhodizonate (C6O6Na2) was used to locate lead in their thalli. The procedure entailed exposure of the lichen to 0, 5, 50 and 100 ppm Pb for 5 min and 1 h and the subsequent determination of the lead contents from photographs of the thalli. Distribution of lead in different parts of the thallus was assessed after exposure of the lichens to 2 ppm Pb (9 h or three d), 50 ppm (45 min) or 200 ppm (4d). Cross sections of vegetative parts of the thallus and of the apothecia revealed that lead penetrated into the cortical cells of the thallus but not into the algal cells of the phycobiont nor the ascospores or medullary cells. The observed massive penetration of lead into cortical cells supports the notion that Ramalina duriaei is sensitive to atmospheric lead pollution.  相似文献   

3.
The induction of cyclobutane pyrimidine dimers (CPDs) by ultraviolet‐B radiation (UV‐B, 280–315 nm) and repair mechanisms were studied in the lichen Cladonia arbuscula ssp. mitis exposed to different temperatures and water status conditions. In addition, the development and repair of CPDs were studied in relation to the different developmental stages of the lichen thallus podetial branches. Air‐dried lichen thalli exposed to UV‐B radiation combined with relatively high visible light (HL, 800 μmol m?2 s?1; 400–700 nm) for 7 days showed a progressive increase of CPDs with no substantial repair, although HL was present during and after irradiation with UV‐B. Fully hydrated lichen thalli, that had not been previously exposed to UV‐B radiation for 7 days, were given short‐term UV‐B radiation treatment at 25°C, and accumulated DNA lesions in the form of CPDs, with repair occurring when they were exposed to photoreactivating conditions (2 h of 300 μmol m?2 s?1, 400–700 nm). A different pattern was observed when fully hydrated thalli were exposed to short‐term UV‐B radiation at 2°C, in comparison with exposure at 25°C. High levels of CPDs were induced at 2°C under UV‐B irradiation, without significant repair under subsequent photoreactivating light. Likewise, when PAR (300 μmol m?2 s?1) and UV‐B radiation were given simultaneously, the CPD levels were not lowered. Throughout all experiments the youngest, less differentiated parts of the lichen thallus – namely ‘tips’, according to our arbitrary subdivision – were the parts showing the highest levels of CPD accumulation and the lowest levels of repair in comparison with the older thallus tissue (‘stems’). Thus the experiments showed that Cladonia arbuscula ssp. mitis is sensitive to UV‐B irradiation in the air‐dried state and is not able to completely repair the damage caused by the radiation. Furthermore, temperature plays a role in the DNA damage repairing capacity of this lichen, since even when fully hydrated, C. arbuscula ssp. mitis did not repair DNA damage at the low temperatures.  相似文献   

4.
Variations in stable carbon isotope discrimination (δ) were investigated across the thalli of several lichen species possessing different photobiont associations. Lichens containing (i) green algae (phycobiont), (ii) green algae in association with cyanobacteria confined in cephalodia, or (iii) cyanobacteria (cyanobiont) as the photobiont partner were studied. Carbon isotope discrimination was analysed in different thallus sections, which varied in distance from the margin and in age. The marginal thallus region is considered to be youngest, while the central region is thought to be oldest. This analysis showed a clear variation in δ across the thallus related to distance from the growing margin. In most of the species examined, the highest δ values were found in marginal regions (younger), while the central and basal regions (older) showed significantly lower δ. To investigate the effects of the historical increase in atmospheric CO2 concentration and the concurrent decrease in the 13C content of atmospheric CO2 on the δ of lichens, experiments were carried out on herbarium samples of Lobaria pulmonaria collected from the mid 19th Century to 1953. The results obtained showed a pattern of variation of δ consistent with that of freshly collected samples; δ decreased substantially with increasing distance from the thallus margin, irrespective of the collection date. Moreover, no consistent variation of discrimination was found among different collection dates. These results demonstrate that the observed variation in δ is caused by age-related changes in the physiological behaviour of different thallus sections, and that the past 150 years of increasing CO2 concentration have not had significant effects on A in L. pulmonaria. Photosynthesis measurements, chlorophyll analysis and observations using optical microscopy, performed on freshly collected lichens, showed significant changes in morphological and physiological characteristics across the thallus. Particularly, remarkable variations in thickness were found across the thallus. These anatomical changes may be responsible for the variation in δ, through variations in CO2 transfer resistance and, consequently, in CO2 availability across the thallus. The lack of age-dependent variation in δ in cyanobiont lichens is possibly attributable to the operation of a CO2-coneentrating mechanism and, therefore, to a more constant CO2 environment across the thallus in this lichen group.  相似文献   

5.
Relationships between growth, nitrogen and concentration of unique biont components were investigated for the tripartite lichens Nephroma arcticum (L.) Torss. and Peltigera aphthosa (L.) Willd. Nitrogen availability was manipulated during 4 summer months by removing cephalodia and their associated N2 fixation activity, or by weekly irrigation with NH4NO3. Chlorophyll and ribulose 1·5‐biphosphate carboxylase/oxygenase (Rubisco), and chitin and ergosterol were used as photobiont and mycobiont markers, respectively. Nitrogen concentrations were similar in older and newer parts of the same thallus, varying between 2 and 5 g m?2, with P. aphthosa having higher concentrations than N. arcticum. Both chlorophyll (Chl a) and chitin were linearly correlated with thallus N, but N. arcticum invested more in fungal biomass and had lower Chl a concentrations in comparison with P. aphthosa at equal thallus N. During the 4 months, control and N‐fertilized thalli of N. arcticum increased in area by 0·2 m2 m?2 and P. aphthosa by 0·4 m2 m?2. Thallus expansion was significantly inhibited in samples without cephalodia, but there was no effect on lichen weight gain. Mean relative growth rate (RGR; mg g?1 d?1) was 3·8 for N. arcticum and 8·4 for P. aphthosa, when time (d) reflected the lichen wet periods. RGR was 2–3 times lower when based on the whole time, i.e. when including dry periods. The efficiency (e) of converting incident irradiance into lichen biomass was positively and linearly correlated with thallus Chl a concentration to the same extent in both species. The slower growth rates of N. arcticum, in comparison with P. aphthosa, could then be explained by their lower nitrogen and Chl a concentrations and a subsequently lower light energy conversion efficiency. Functional and dynamic aspects of resource allocation patterns of the two lichens are discussed in relation to the above findings.  相似文献   

6.
This review considers various aspects of the growth of foliose lichens including early growth and development, variation in radial growth rate (RaGR) of different species, growth to maturity, lobe growth variation, senescence and fragmentation, growth models, the influence of environmental variables, and the maintenance of thallus symmetry. The data suggest that a foliose lichen thallus is essentially a ‘colony’ in which the individual lobes exhibit a considerable degree of autonomy in their growth processes. During development, recognisable juvenile thalli are usually formed by 15 months to 4 years while most mature thalli exhibit RaGR between 1 and 5 mm yr−1. RaGR within a species is highly variable. The growth rate-size curve of a foliose lichen thallus may result from growth processes that take place at the tips of individual lobes together with size-related changes in the intensity of competition for space between the marginal lobes. Radial growth and growth in mass is influenced by climatic and microclimatic factors and also by substratum factors such as rock and bark texture, chemistry, and nutrient enrichment. Possible future research topics include: (1) measuring fast growing foliose species through life, (2) the three dimensional changes that occur during lobe growth, (3) the cellular changes that occur during regeneration, growth, and division of lobes, and (4) the distribution and allocation of the major lichen carbohydrates within lobes.  相似文献   

7.
V. Smith  N. Gremmen 《Polar Biology》2001,24(6):455-459
The lichen Turgidosculum complicatulum (formerly Mastodia tesselata) occurs in the shore-zone of Marion Island (sub-Antarctic: 47°S,38°E). Net CO2 exchange in the lichen is dominated by a strong temperature-dependence of respiration rate. The light/temperature response of photosynthesis is such that under the prevailing climatic regime on the island the lichen, if sufficiently hydrated, would exhibit near-maximal photosynthesis rates for 75% of the photoperiod over the year. A photosynthetic response model predicts that the lichen's net annual carbon acquisition is 3.1 g C g-1 year-1 under the current solar radiation and temperature regime at the island. The model predicts that changes in temperature and radiation by the amounts known to have occurred in the past few decades, and even greater changes (temperature increase by up to 2°C, radiation by up to 10%), would negligibly affect the annual amount of carbon acquired provided the thalli remain hydrated. Incorporating hydration/desiccation cycles into the model resulted in a substantial lowering of annual net C exchange. However, attempts to include the increase in aridity known to have occurred at the island since 1971 gave conflicting scenarios for the effect on annual C acquisition, depending on whether atmospheric drying or thallus drying was considered.  相似文献   

8.
Rosette-formed, circular thalli of Degelia plumbea were studied in the laboratory. Regardless of thallus size, the optimal quantum yield of photosystem II (F V/F M) remained at a high, constant level during a drying cycle starting with fully hydrated thalli until the thallus water content reached about 200%. Net photosynthesis reached a maximum level at this hydration level. Thereafter, both F V/F M and net photosynthesis fell rapidly to zero at a water content of somewhat less than 100%. There was a highly significant, positive relationship between thallus size and the water-holding capacity, as well as a strong, negative correlation between size and water loss per thallus area. Consequently, an increase in thallus size from 1 to 36 cm2 lead to a tenfold prolongation of the photosynthetically active period during a drying cycle at a low radiation regime. The improved water-holding capacity in larger thalli is mainly a result of a thicker hypothallus. The fast desiccation of small thalli suggests that the regeneration of D. plumbea could be severely hampered by nearby logging that raises the evaporative demand by increasing radiation loads and wind exposure at remaining lichen sites. Received: 12 December 1997 / Accepted: 20 March 1998  相似文献   

9.
Abstract:Radial14C/C profiles across three individuals of the crustose lichenRhizocarpon geographicum (L.) DC. have been determined using accelerator mass spectrometry. These data were used to assess whether lifespan estimates can be determined in this species using14C/C isotope ratio measurements.14C/C profiles are relatively flat with Δ14C values (deviations from the modern radiocarbon standard) for the radial samples displaying a small spread ranging from 130 to 200 per mil. The data are consistent with carbon cycling based on growth patterns involving replacement and fusion of areoles within the thallus as well as or instead of cellular or molecular replacement. Consequently, lifespan estimates cannot be obtained from14C/C measurements of this species and the Δ14C profiles provide no insights into whether the relationship between size and age is linear or curvilinear in this species.  相似文献   

10.
Dispersal patterns from seven terricolous lichen species, with a high capacity for asexual reproduction by fragmentation (Cetraria muricata, Cladonia species), were studied in differing vegetation types in north-eastern Germany. Marked lichen thalli were fragmented by trampling. After 15 days the spread of thallus fragments was monitored. Whereas most of the fragments that were dispersed by wind remained within a 20-cm radius from the source, the maximal dispersal distance was 57 cm in a dry sand grassland and 68 cm in an open pioneer pine forest. Dispersal was negligible in a closed old-growth pine forest. Several fragmented lichen cushions were disturbed and removed by animals, and led to a maximal dispersal distance of 9·70 m. These results suggest that: (a) thallus fragments provide good short-distance dispersal in open vegetation, but are inefficient for long-distance dispersal, and (b) wind and animals are important factors for the dispersal of thallus fragments. For restoration management of man-made substrata, artificial introduction of lichen thalli is proposed.  相似文献   

11.
Many lichens show seriously depressed net photosynthesis (NP) at high thallus water contents due to increased carbon dioxide diffusion resistance through blockage of diffusion pathways by water. The soil lichen Diploschistes muscorum, however, shows no depression and NP is close to maximal even at the highest thallus water content. We investigated whether lichen substances (lecanoric and diploschistesic acids) in the cortex and medulla contributed to this ability to maintain high NP. Dry thalli were extracted with water-free acetone and, after this treatment, were found to be fully viable to the extent of continued growth after replanting in the field. No differences were found in the response of NP to thallus water content between the normal and extracted thalli, in fact the response curves were often nearly identical. Thus, in this species it seems that lichen substances did not maintain the water-free diffusion pathways and some other explanation, possibly structural, needs to be sought. Received: 5 April 1997 / Accepted: 26 April 1997  相似文献   

12.
Relations between irradiance (I) and lichen growth were investigated for five macro‐lichens growing at two sites in Sweden. The lichens represented different mycobiont–photobiont associations, two morphologies (foliose, fruticose) and two life forms (epiphytic, terricolous). The lichens were transplanted at two geographically distant sites in Sweden (1000 km apart) from Sept 1995 to Sept 1996 in their typical microhabitats, where microclimate and growth were followed. Between April/May and Sept 96, the terricolous species had a dry matter gain of 0·2 to 0·4 g (g DW)–1 and the epiphytes 0·01 to 0·02 g (g DW)–1. When related to area, growth amounted to 30 to 70 g m?2 for the terricolous species and to 1 to 4 g m?2 for the epiphytes. There was a strong correlation between growth and intercepted irradiance when the lichens were wet (Iwet), with 0·2 to 1·1 g lichen dry matter being produced per MJ solar energy. Across the 10 sets of transplants, light use efficiencies of dry matter yield (e) ranged between 0·5 and 2%, using an energy equivalent of 17·5 kJ g?1 of lichen dry matter. The higher productivity of the terricolous species was due to longer periods with thallus water contents sufficient for metabolic activity and because of the higher mean photon flux densities of their microhabitat. A four‐fold difference in photosynthetic capacity among the species was also important. It is concluded that lichen dry matter gain was primarily related to net carbon gain during metabolically active periods, which was determined by light duration, photon flux density and photosynthetic capacity.  相似文献   

13.
Variations in the morphology and physiology were noted when parts of the Peltigera aphthosa Willd. thallus differing in age were examined. The many small cephalodia on the growing apex of the lichen showed a lower heterocyst frequency (14%) than those on the rest of the thallus (21–22%), which was reflected in the nitrogenase activity. In contrast, highest levels of photosynthesis (14CO2 uptake and O2 evolution) were noted at the growing apex. while respiration rates were fairly stable over the thallus. The water-holding capacity was greatest in the midparts. Cephalodial biomass represented an average of 2.6% of total thallus biomass. while the number and size of these structures varied considerably. A minor part of the total carbon fixation (14CO2) and net oxygen evolution (O2 electrode) was performed by the blue-green phycobiont (Nostoc) in light. A rapid excretion of ammonia from isolated cephalodia was noticed, which together with a comparatively constant C:N ratio throughout the thallus indicated a rapid transport of metabolites facilitated by close physical contact (electron microscopy).  相似文献   

14.
To provide a common currency for model comparison, validation and manipulation, we suggest and describe the use of impulse response functions, a concept well-developed in other fields, but only partially developed for use in terrestrial carbon cycle modelling. In this paper, we describe the derivation of impulse response functions, and then examine (i) the dynamics of a simple five-box biosphere carbon model; (ii) the dynamics of the CASA biosphere model, a spatially explicit NPP and soil carbon biogeochemistry model; and (iii) various diagnostics of the two models, including the latitudinal distribution of mean age, mean residence time and turnover time. We also (i) deconvolve the past history of terrestrial NPP from an estimate of past carbon sequestration using a derived impulse response function to test the performance of impulse response functions during periods of historical climate change; (ii) convolve impulse response functions from both the simple five-box model and the CASA model against a historical record of atmospheric δ13C to estimate the size of the terrestrial 13C isotopic disequilibrium; and (iii) convolve the same impulse response functions against a historical record of atmospheric 14C to estimate the 14C content and isotopic disequilibrium of the terrestrial biosphere at the 1° × 1° scale. Given their utility in model comparison, and the fact that they facilitate a number of numerical calculations that are difficult to perform with the complex carbon turnover models from which they are derived, we strongly urge the inclusion of impulse response functions as a diagnostic of the perturbation response of terrestrial carbon cycle models.  相似文献   

15.
This study investigates how hydration during light and dark periods influences growth in two epiphytic old forest lichens, the green algal Lobaria pulmonaria and the cyanobacterial L. scrobiculata. The lichens were cultivated in growth chambers for 14 days (200 μmol m?1 s?2; 12 h photoperiod) at four temperature regimes (25/20 °C, 21/16 °C, 13/8 °C, and 6/1 °C; day/night temperatures) and two hydration regimes (12 h day-time hydration; 12 h day-time + 12 h night-time hydration). Growth was highly dynamic, showing that short-term growth experiments in growth cabinets have a high, but largely unexplored potential in functional lichen studies. The highest measured growth rates were not far from the maximal dry matter gain estimated from published net photosynthetic CO2 uptake data. For the entire data set, photobiont type, temperature, hydration regime and specific thallus mass accounted for 46.6 % of the variation in relative growth rate (RGR). Both species showed substantially higher relative growth rates based on both biomass (RGR) and thallus area (RTAGR) when they were hydrated day and night compared to hydration in light only. Chronic photoinhibition was substantial in thalli hydrated only during the day time and kept at the highest and lowest temperature regimes, resulting in exponential increases in RGR with increasing maximal PSII efficiency (F v/F m) in both species. However, the depression in F v/F m was stronger for the cyanolichen than for the cephalolichen at extreme temperatures. The growth-stimulating effect of night-time hydration suggests that nocturnal metabolic activity improves recovery of photoinhibition and/or enhances the conversion rate of photosynthates into thallus extension.  相似文献   

16.
The profound knowledge of the structural and chemical characteristics of the interface between lichen thallus and rock, seems to be indispensable for the process of understanding the lichen symbiosis as well as the significance of the weathering action of lichens. One of the most promising techniques to be used in this investigation is the Scanning Electron Microscopy (SEM) in the back-scattered electron (BSE) emission mode. In the present work thalli of Parmelia conspersa, Aspicilia intermutans and Lecidea auriculata growing in granitic rock were examined by SEM in BSE mode with (Energy Dispersive Spectroscopy) EDS. In the case of the foliose thalli the observation of the interface permits detection of the rhizine/hyphae adherence and determination of the origin of the minerals which adhere to the rhizine/hyphae. In the case of the crustose thalli BSE permits investigation within the ultrastructure of the crustose thallus and crustose lichen-rock contact zone and also allows observations of the penetration and filling of the fissures and cracks of the underlying rock by components of the thallus and other living organisms. The BSE images could contribute to a better knowledge of the cytological state of the rock-inhabiting organisms and also to the understanding of the action of the chemical treatments used in the removal of lichen from building materials.  相似文献   

17.
The longevity of organisms is intrinsically interesting and can provide useful information on their population structure and dynamics and the dynamics of associated communities. With the exception of perennial Laminariales that have rings in the stipe, the life spans of most perennial macroalgae are unknown or based on anecdotal observations. Using morphological analyses combined with the location and time of the rise in 14C from atmospheric nuclear testing within the thallus, we determined that the growth rate of a specimen of Clathromorphum nereostratum Lebednik from Adak Island was 0.30 mm·yr?1, the 30 bands within the thallus were annual, and the specimen sampled was 61–75 years old. Living crusts of this species from the same geographic region are reported to be up to 20 cm thick. Assuming our growth rate is typical, C. nereostratum can be approximately 700 years old, the oldest known living alga. This longevity and consistent banding within the thallus suggest that smaller scale sampling and additional chemical analyses of this alga could provide a detailed long‐term record of environmental variation at high latitudes in the North Pacific.  相似文献   

18.
The pore system within the thalli of 13 lichen taxa belonging to the family Umbilicariaceae has been studied by means of mercury intrusion porosimetry. A characteristic bimodal pore size distribution with a central depression around 0.05 μm of equivalent pore radius was obtained in all lichen samples. However, clear differences were found among the pore size distributions of each lichen taxa. The total thallus porosity was undoubtedly related to the anatomy of the medulla. In general, a radial plectenchymatic medulla conferred larger porosity to the thallus than an arachnoidal one. Maximum thallus water content closely depended on the total thallus porosity in the five lichens possessing rhizinomorphs. The species with a similar type of medulla could be grouped together in a multivariate analysis that considered three porosimetric parameters and the maximum thallus water content. Umbilicaria cinereorufescens was the most distinct species, with the lowest values of total porosity and water storage capacity and the largest value of thallus density, apparently due to its scleroplectenchymatic medulla. The pore size distribution existing inside the thallus of the species studied is discussed in relation to the often opposing problems of CO2 exchange and optimal water relations. Some results pointed to a large influence of the micropores (<0.05 μm) on the water storage capacity of the thallus, while the macropores would have a more important role in gas exchange.  相似文献   

19.
D. J. Hill  V. Ahmadjian 《Planta》1972,103(3):267-277
Summary When isolated in pure culture, four genera of lichen algae were able to produce the polyol which is known to move from the alga to the fungus in lichens with these algae. This conclusion corrects earlier suggestions that the mobile polyol is only formed by the alga in the lichen thallus. Stichococcus produced sorbitol and it is therefore suggested that, in lichens with this alga, sorbitol moves between the symbionts. Hyalococcus and Stichococcus had a similar pattern of incorporation of H14CO 3 - in the light, suggesting a close relationship between these algae which are only separated now on morphological grounds.The pattern of incorporation of H14CO 3 - in the light into Cladonia cristatella and its alga (Trebouxia erici) in culture indicates that in the cultured algae more 14C was incorporated into ethanol insoluble substances and lipids and less into ribitol than in the lichen. The pattern in a joint culture of the alga and the fungus of C. cristatella was approximately intermediate between that of the lichen and the alga. However, only a small amount of 14C fixed by the alga reached the fungus in the joint culture, and it is therefore suggested that the presence of the fungus without morphological differentiation into a lichen thallus is not sufficient to promote the alga to release carbohydrate.  相似文献   

20.
D. S. Coxson 《Oecologia》1987,73(3):454-458
Summary The response of net photosynthesis to temperature, moisture, and light was examined in thalli of the tropical basidiomycete lichen Cora pavonia from recent lahar flows on the volcanic summit La Soufrière (Guadeloupe, French West Indies). Although thalli of C. pavonia are typically exposed to only low light intensities and isothermal temperature conditions under prevailing cloud/shroud conditions on La Soufrière, their photosynthetic response matrix reveals an unexpected breadth of response. The temperature optimum of net photosynthetic uptake in C. pavonia rises from 6°C at a photon flux area density of 25 mol m–2 s–1 PAR to 27°C at 1000 mol m–2 s–1 PAR, with rates of maximal net photosynthetic uptake exceeding 25 mg CO2 g–1 h–1. Net photosynthesis was optimal at thallus moisture contents of 250 to 350 percent water content by weight, declining only slightly in fully saturated thalli. These response patterns pose an apparent paradox, as on most days they will act to severely restrict net photosynthetic uptake by thalli of C. pavonia on La Soufrière. This paradox is discussed in context of those selective pressures faced by lichen thalli in later successional stages as well as those imposed by brief periods of atypical weather conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号