首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of Crassulacean acid metabolism (CAM) plants in México and worldwide has a long history, but the morphological and photosynthetic aspects of these plants have only been considered recently. Emphasis in this article is on the daily net CO2 uptake ability by three species of agaves and three species of cacti that are currently extensively cultivated in México for beverages, food, fodder, and forage ‐ Agave mapisaga, A. salmiana, A. tequilana, Opuntia ficus‐indica, O. robusta and Stenocereus queretaroensis. Data under controlled conditions are used to help interpret seasonal net CO2 uptake patterns observed in the field. These CAM plants have instantaneous and total daily net CO2 uptake values similar to those for highly productive C3 and C4 crops. The future increase in the cultivated area of CAM plants will have both agronomical and ecological ramifications because of the ability of these plants to endure prolonged drought and to sequester carbon during extended dry periods when few C3 and C4 crops and non‐CAM native plants can fix atmospheric CO2.  相似文献   

2.
Crassulacean acid metabolism (CAM) was examined under natural environmental conditions in the succulent C4 dicot Portulaca oleracea L. Two groups of plants were monitored; one was watered daily (well watered), while the other received water once every 3 to 4 weeks to produce a ψ of −8 bars (drought stressed). Gas exchange, transpiration rate, and titratable acidity were measured for 24-hour periods during the growing season. CAM activity was greatest in drought-stressed plants during late August which had 13 hour days and day/night temperatures of 35/15°C. Under these conditions net CO2 uptake occurred slowly throughout the night. Diurnal fluctuations of titratable acidity took place in both leaves and stems with amplitudes of 17 and 47 microequivalents per gram fresh weight, respectively. Transpiration data indicated greater opening of stomata during the night than the day. CAM was less pronounced in drought-stressed P. oleracea plants in July and September; neither dark CO2 uptake nor positive carbon balance occurred during the July measurements. In contrast, well-watered plants appeared to rely on C4 photosynthesis throughout the season, although some acid fluctuations occurred in stems of these plants during September.  相似文献   

3.
In the epiphytic tillandsioids, Guzmania monostachia, Werauhia sanguinolenta, and Guzmania lingulata (Bromeliaceae), juvenile plants exhibit an atmospheric habit, whereas in adult plants the leaf bases overlap and form water-holding tanks. CO2 gas-exchange measurements of the whole, intact plants and δ13C values of mature leaves demonstrated that C3 photosynthesis was the principal pathway of CO2 assimilation in juveniles and adults of all three species. Nonetheless, irrespective of plant size, all three species were able to display features of facultative CAM when exposed to drought stress. The capacity for CAM was the greatest in G. monostachia, allowing drought-stressed juvenile and adult plants to exhibit net CO2 uptake at night. CAM expression was markedly lower in W. sanguinolenta, and minimal in G. lingulata. In both species, low-level CAM merely sufficed to reduce nocturnal respiratory net loss of CO2. δ13C values were generally less negative in juveniles than in adult plants, probably indicating increased diffusional limitation of CO2 uptake in juveniles.  相似文献   

4.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

5.
Agaves can grow in marginal arid and semiarid lands where their special ecological and physiological adaptations to environmental conditions give them the potential to produce substantial biomass. Agave americana was the first agave species shown to be a Crassulacean Acid Metabolism plant, with CO2 uptake occurring primarily at night and with high water‐use efficiency (photosynthesis/transpiration). A. salmiana and A. mapisaga can have high nocturnal net CO2 uptake rates and high productivities averaging 40 tonnes dry weight ha?1 yr?1. Agaves can benefit from the increases in temperature and atmospheric CO2 levels accompanying global climate change. An Environmental Productivity Index can predict the effects of soil and environmental factors on CO2 uptake and hence on the regions appropriate for cultivating agaves. In turn, their increased cultivation can support the production of innovative earth‐friendly commodities that can be used as new bioenergy feedstocks.  相似文献   

6.
Winter K 《Plant physiology》1980,66(5):917-921
Net CO2 and water vapor exchange were studied in the Crassulacean acid metabolism plant Kalanchoë pinnáta during a normal 12-hour light/12-hour dark cycle and during a prolonged light period. Leaf temperature and leaf-air vapor pressure difference were kept constant at 20 C and 9 to 10 millibar. There was a 25% increase in the rate of CO2 fixation during the first 6 hours prolonged light without change in stomatal conductance. This was associated with a decrease in the intracellular partial pressure of CO2, a decrease in the stimulation of net CO2 uptake by 2% O2, and a decrease in the CO2 compensation point from 45 to 0 microbar. In the normal light period after deacidification, leaves showed a normal light dependence of CO2 uptake but, in prolonged light, CO2 uptake was scarcely light-dependent. The increase in titratable acidity in prolonged light was similar to that in the dark.  相似文献   

7.
Keeley JE  Bowes G 《Plant physiology》1982,70(5):1455-1458
The submerged aquatic plant Isoetes howellii Engelmann possesses Crassulacean acid metabolism (CAM) comparable to that known from terrestrial CAM plants. Infrared gas analysis of submerged leaves showed Isoetes was capable of net CO2 uptake in both light and dark. CO2 uptake rates were a function of CO2 levels in the medium. At 2,500 microliters CO2 per liter (gas phase, equivalent to 1.79 milligrams per liter aqueous phase), Isoetes leaves showed continuous uptake in both the light and dark. At this CO2 level, photosynthetic rates were light saturated at about 10% full sunlight and were about 3-fold greater than dark CO2 uptake rates. In the dark, CO2 uptake rates were also a function of length of time in the night period. Measurements of dark CO2 uptake showed that, at both 2,500 and 500 microliters CO2 per liter, rates declined during the night period. At the higher CO2 level, dark CO2 uptake rates at 0600 h were 75% less than at 1800 h. At 500 microliters CO2 per liter, net CO2 uptake in the dark at 1800 h was replaced by net CO2 evolution in the dark at 0600 h. At both CO2 levels, the overnight decline in net CO2 uptake was marked by periodic bursts of accelerated CO2 uptake. CO2 uptake in the light was similar at 1% and 21% O2, and this held for leaves intact as well as leaves split longitudinally. Estimating the contribution of light versus dark CO2 uptake to the total carbon gain is complicated by the diurnal flux in CO2 availability under field conditions.  相似文献   

8.
The impact of elevated CO2, periodic drought and warming on photosynthesis and leaf characteristics of the evergreen dwarf shrub Calluna vulgaris in a temperate heath ecosystem was investigated. Photosynthesis was reduced by drought in midsummer and increased by elevated CO2 throughout the growing season, whereas warming only stimulated photosynthesis early in the year. At the beginning and end of the growing season, a T × CO2 interaction synergistically stimulated plant carbon uptake in the combination of warming and elevated CO2. At peak drought, the D × CO2 interaction antagonistically down‐regulated photosynthesis, suggesting a limited ability of elevated CO2 to counteract the negative effect of drought. The response of photosynthesis in the full factorial combination (TDCO2) could be explained by the main effect of experimental treatments (T, D, CO2) and the two‐factor interactions (D × CO2, T × CO2). The interactive responses in the experimental treatments including elevated CO2 seemed to be linked to the realized range of treatment variability, for example with negative effects following experimental drought or positive effects following the relatively higher impact of night‐time warming during cold periods early and late in the year. Longer‐term experiments are needed to evaluate whether photosynthetic down‐regulation will dampen the stimulation of photosynthesis under prolonged exposure to elevated CO2.  相似文献   

9.
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short‐term exchange and the long‐term storage of atmospheric carbon dioxide (CO2) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11‐year time series of half‐hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2. The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23–0.54 gC m?2. On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored.  相似文献   

10.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

11.
The climate of the native tropical forest habitats of Hylocereus undatus, a hemiepiphytic cactus cultivated in 20 countries for its fruit, can help explain the response of its net CO2 uptake to environmental factors. Under wet conditions, about 85% of the total daily net CO2 uptake occurs at night via Crassulacean acid metabolism, leading to a high water‐use efficiency. Total daily net CO2 uptake is reduced 57% by only 10 days of drought, possibly involving stomatal closure induced by abscisic acid produced in the roots, which typically occupy a small substrate volume. Total daily net CO2 uptake for H. undatus is maximal at day/night air temperatures of 30/20°C, optimal temperatures that are higher than those for desert cacti but representative of ambient temperatures in the tropics; its total daily net CO2 uptake becomes zero at day/night air temperatures of 42/32°C. Stem damage occurs at 45°C for H. undatus, whose photosynthetic cells show little acclimation to high temperatures compared with other cacti and are also sensitive to low temperatures, ‐1.5°C killing half of these cells. Consistent with its shaded habitat, total daily net CO2 uptake is appreciable at a total daily PPF of only 2 mol m2 day' and is maximal at 20 mol m?2 day?1, above which photoinhibition reduces net CO2 uptake. Net CO2 uptake ability, which is highly correlated with stem nitrogen and chlorophyll contents, changes only gradually (halftimes of 2–3 months) as the concentration of applied N is changed. Doubling the atmospheric CO2 concentration raises the total daily net CO2 uptake of H. undatus by 34% under optimal conditions and by even larger percentages under adverse environmental conditions.  相似文献   

12.
The 24 h O2 uptake and release together with the CO2 balance have been measured in two CAM plants, one a non-succulent Sempervivum grandifolium, the other a succulent Prenia sladeniana. The O2 uptake was estimated by the use of 18O2. It was found that the mean hourly O2 uptake in the light was 7 times that in the dark for Sempervivum and 5 times that for Prenia, after correction for the lightdark temperature difference. It was estimated that oxygen uptake in the light was 2.4 times greater than oxygen release (=net photosynthesis) in Sempervivum and 1.4 times greater in Prenia. In both plants there was a positive carbon balance over the 24 h period under the experimental conditions. It was estimated that malate formed during the night could, if completely oxidized to CO2 and water, account for 74% of the light phase O2 uptake in Sempervivum. In Prenia the O2 uptake was more than sufficient to account for a full oxidation of malate.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PEP phosphoenolpyruvate - RrBP ribulose-1,5-bisphosphate - TCA tricarboxylic acid cycle  相似文献   

13.
Long-term and direct measurements of CO2 and water vapour exchange are needed over forested ecosystems to determine their net annual fluxes of carbon dioxide and water. Such measurements are also needed to parameterize and test biogeochemical, ecological and hydrological assessment models. Responding to this need, eddy covariance measurements of CO2 and water vapour were made ever a deciduous forest growing near Oak Ridge, TN, between April 1993 and April 1994. Periodic measurements were made of leaf area index, stomatal resistance, soil moisture and pre-dawn leaf water potential to characterize the gas exchange capacity of the canopy. Four factors had a disproportionate influence on the seasonal variation of CO2 flux densities. These factors were photon flux densities (during the growing season), temperature (during the dormant season), leaf area index and the occurrence of drought The drought period occurred during the peak of the growing season and caused a significant decline in daily and hourly CO2 flux densities, relative to observations over the stand when soil moisture was plentiful. The annual net uptake of carbon was calculated by integrating flux measurements and filling missing and spurious data with the relations obtained between measured CO2 fluxes and environmental forcing variables. The net flux of carbon for the period between April 1993 and April 1994 was -525 g C m?2 y?1. This value represents a net flux of carbon from the atmosphere and into the forest. The net annual carbon exchange of this southern temperate broadleaved forest exceeded values measured over a northern temperate forest (which experiences a shorter growing season and has less leaf area) by 200 g C m?2 y?1 (cf. Wofsy et al 1993). The seasonal variation of canopy evaporation (latent heat flux) was controlled mostly by changes in leaf area and net radiation. A strong depression in evaporation rates was not observed during the drought Over a broadleaved forest large vapour pressure deficits promote evaporation and trees in a mixed stand are able to tap a variety of deep and shallow water sources.  相似文献   

14.
Crassulacean acid metabolism (CAM) was investigated in leaves and stems of the succulent C4 dicot Portulaca oleracea L. Diurnal acid fluctuations, CO2 gas exchange, and leaf resistance were monitored under various photoperiod and watering regimes. No CAM activity was seen in well watered plants grown under 16-hour days. Under 8-hour days, however, well watered plants showed a CAM-like pattern of acid fluctuation with amplitudes of 102 and 90 microequivalents per gram fresh weight for leaves and stems, respectively. Similar patterns were also observed in detached leaves and defoliated stems. Leaf resistance values indicated that stomata were open during part of the dark period, but night acidification most likely resulted from refixation of respiratory CO2. In water-stressed plants maximum acid accumulations were reduced under both long and short photoperiods. At night, these plants showed short periods of net CO2 uptake and stomatal opening which continued all night long during preliminary studies under natural environmental conditions. Greatest acid fluctuations, in P. oleracea, with amplitudes of 128 microequivalents per gram fresh weight, were observed in water-stressed plants which had been rewatered, especially when grown under short days. No net CO2 uptake took place, but stomata remained open throughout the night under these conditions. These results indicate that under certain conditions, such as water stress or short photoperiods, P. oleracea is capable of developing an acid metabolism with many similarities to CAM.  相似文献   

15.
A technique used for hydroponics was adapted to measure instantaneousroot water uptake from the soil for a leaf succulent CAM species,Agave deserti. Comparisons were made to previously modelledwater fluxes for A. deserti and to Encelia farinosa, a non-succulentC3species. Net CO2uptake and transpiration forA. deserti underwell-watered conditions occurred primarily at night whereasroot water uptake was relatively constant over 24 h. Leaf thicknessdecreased when transpiration commenced and then increased whenrecharge from the stem and soil occurred, consistent with previousmodels. A drought of 90 d eliminated net CO2uptake and transpirationand reduced the water content of leaves by 62%. Rewetting theentire root system for 7 d led to a full recovery of leaf waterstorage but only 56% of maximal net CO2uptake. Root water uptakewas maximal immediately after rewetting, which replenished rootwater content, and decreased to a steady rate by 14 d. Whenonly the distal 50% of the root system was rewetted, the timefor net CO2uptake and leaf water storage to recover increased,but by 30 d gas exchange and leaf water storage were similarto 100% rewetting. Rewetting 10 or 20% of the root system resultedin much less water uptake; these plants did not recover leafwater storage or gas exchange by 30 d after rewetting. A redundancyin the root system of A. deserti apparently exists for dailywater uptake requirements under wet conditions but the entireroot system is required for rapid recovery from drought.Copyright1999 Annals of Botany Company Agave deserti Engelm., desert, drought, gas exchange, rewetting, roots, succulent, water uptake.  相似文献   

16.
Air temperature and humidity, moss surface temperature, moss water content, and photosynthetically active radiation were measured through a clear dry night and early morning in July 1998; CO2 gas exchange of the moss was measured by infra-red gas analysis. The measurements showed progressive absorption of water by the moss through much of the night. The moss reached sufficient water content for about 1.5 h of positive net CO2 uptake immediately after dawn. The cumulative net carbon balance on this occasion was negative, but mornings with heavier dew could give a positive daily carbon balance, and short, early morning periods of photosynthesis during prolonged dry weather may mitigate long-term desiccation damage and allow for regular molecular repair.  相似文献   

17.
Net CO2 uptake over 24-hour periods was examined for the leaves and for the stems of 11 species of cacti representing all three subfamilies. For Pereskia aculeata, Pereskia grandifolia, and Maihuenia poeppigii (subfamily Pereskioideae), all the net shoot CO2 uptake was by the leaves and during the daytime. In contrast, for the leafless species Carnegiea gigantea, Ferocactus acanthodes, Coryphantha vivipara, and Mammillaria dioica (subfamily Cactoideae), all the shoot net CO2 uptake was by the stems and at night. Similarly, for leafless Opuntia ficus-indica (subfamily Opuntioideae), all net CO2 uptake occurred at night. For leafy members of the Opuntioideae (Pereskiopsis porteri, Quiabentia chacoensis, Austrocylindropuntia subulata), at least 88% of the shoot CO2 uptake over 24 hours was by the leaves and some CO2 uptake occurred at night. Leaves responded to the instantaneous level of photosynthetically active radiation (PAR) during the daytime, as occurs for C3 plants, whereas nocturnal CO2 uptake by stems of O. ficus-indica and F. acanthodes responded to the total daily PAR, as occurs for Crassulacean acid metabolism (CAM) plants. Thus, under the well-watered conditions employed, the Pereskioideae behaved as C3 plants, the Cactoideae behaved as CAM plants, and the Opuntioideae exhibited characteristics of both pathways.  相似文献   

18.
We found similarities between the effects of low night temperatures (5°C–10°C) and slowly imposed water stress on photosynthesis in grapevine (Vitis vinifera L.) leaves. Exposure of plants growing outdoors to successive chilling nights caused light- and CO2-saturated photosynthetic O2 evolution to decline to zero within 5 d. Plants recovered after four warm nights. These photosynthetic responses were confirmed in potted plants, even when roots were heated. The inhibitory effects of chilling were greater after a period of illumination, probably because transpiration induced higher water deficit. Stomatal closure only accounted for part of the inhibition of photosynthesis. Fluorescence measurements showed no evidence of photoinhibition, but nonphotochemical quenching increased in stressed plants. The most characteristic response to both stresses was an increase in the ratio of electron transport to net O2 evolution, even at high external CO2 concentrations. Oxygen isotope exchange revealed that this imbalance was due to increased O2 uptake, which probably has two components: photorespiration and the Mehler reaction. Chilling- and drought-induced water stress enhanced both O2 uptake processes, and both processes maintained relatively high rates of electron flow as CO2 exchange approached zero in stressed leaves. Presumably, high electron transport associated with O2 uptake processes also maintained a high ΔpH, thus affording photoprotection.  相似文献   

19.
Hylocereus undatus (Haworth) Britton and Rose growing in controlled environment chambers at 370 and 740 μmol CO2 mol?1 air showed a Crassulacean acid metabolism (CAM) pattern of CO2 uptake, with 34% more total daily CO2 uptake under the doubled CO2 concentration and most of the increase occurring in the late afternoon. For both CO2 concentrations, 90% of the maximal daily CO2 uptake occurred at a total daily photosynthetic photon flux density (PPFD) of only 10 mol m?2 day?1 and the best day/night air temperatures were 25/15°C. Enhancement of the daily net CO2 uptake by doubling the CO2 concentration was greater under the highest PPFD (30 mol m?2 day?1) and extreme day/night air temperatures (15/5 and 45/35°C). After 24 days of drought, daily CO2 uptake under 370 μmol CO2 mol?1 was 25% of that under 740 μmol CO2 mol?1. The ratio of variable to maximal chlorophyll fluorescence (Fy/Fm) decreased as the PPFD was raised above 5 mol m?2 day?1, at extreme day/night temperatures and during drought, suggesting that stress occurred under these conditions. Fv/Fm was higher under the doubled CO2 concentration, indicating that the current CO2 concentration was apparently limiting for photosynthesis. Thus net CO2 uptake by the shade-tolerant H. undatus, the photosynthetic efficiency of which was greatest at low PPFDs. showed a positive response to doubling the CO2 concentration, especially under stressful environmental conditions.  相似文献   

20.
Radon‐222 (Rn‐222) is used as a transport tracer of forest canopy–atmosphere CO2 exchange in an old‐growth, tropical rain forest site near km 67 of the Tapajós National Forest, Pará, Brazil. Initial results, from month‐long periods at the end of the wet season (June–July) and the end of the dry season (November–December) in 2001, demonstrate the potential of new Rn measurement instruments and methods to quantify mass transport processes between forest canopies and the atmosphere. Gas exchange rates yield mean canopy air residence times ranging from minutes during turbulent daytime hours to greater than 12 h during calm nights. Rn is an effective tracer for net ecosystem exchange of CO2 (CO2 NEE) during calm, night‐time hours when eddy covariance‐based NEE measurements are less certain because of low atmospheric turbulence. Rn‐derived night‐time CO2 NEE (9.00±0.99 μmol m?2 s?1 in the wet season, 6.39±0.59 in the dry season) was significantly higher than raw uncorrected, eddy covariance‐derived CO2 NEE (5.96±0.51 wet season, 5.57±0.53 dry season), but agrees with corrected eddy covariance results (8.65±1.07 wet season, 6.56±0.73 dry season) derived by filtering out lower NEE values obtained during calm periods using independent meteorological criteria. The Rn CO2 results suggest that uncorrected eddy covariance values underestimate night‐time CO2 loss at this site. If generalizable to other sites, these observations indicate that previous reports of strong net CO2 uptake in Amazonian terra firme forest may be overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号