首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergent macrophytes were studied in two, small subarctic lakes in 1972–1980. One of the lakes, Hymenjaure, was fertilized with phosphorus in 1972–1974 and with both phosphorus and nitrogen in 1975. The emergent vegetation in the lakes consisted mainly of Carex rostrata Stokes and Equisetum fluviatile L. The maximum shoot biomass of C. rostrata varied between 12–25 g dry wt. m?2 during the investigation years, corresponding figures for E. fluviatile were 10–21 g dry wt. m?2. The yearly shoot production of the emergent macrophytes ranged from 6 to 21 g dry wt. m?2 during the study. The natural variations in growth of both species between the years were mainly regulated by summer temperature. Carex rostrata was able to benefit from increased phosphorus supply, when more shoots were produced within its stands. Growth of individual shoots, though, was still regulated by summer temperature. Equisetum fluviatile increased its phosphorus uptake as an effect of the fertilizations, but production was not affected.  相似文献   

2.
Alpine plant species have been shown to exhibit a more pronounced increase in leaf photosynthesis under elevated CO2 than lowland plants. In order to test whether this higher carbon fixation efficiency will translate into increased biomass production under CO2 enrichment we exposed plots of narrow alpine grassland (Swiss Central Alps, 2470 m) to ambient (355 μl l-1) and elevated (680 μl l-1) CO2 concentration using open top chambers. Part of the plost received moderate mineral nutrient additions (40 kg ha-1 year-1 of nitrogen in a complete fertilizer mix). Under natural nutrient supply CO2 enrichment had no effect on biomass production per unit land area during any of the three seasons studied so far. Correspondingly, the dominant species Carex curvula and Leontodon helveticus as well as Trifolium alpinum did not show a growth response either at the population level or at the shoot level. However, the subdominant generalistic species Poa alpina strongly increased shoot growth (+47%). Annual root production (in ingrowth cores) was significantly enhanced in C. curvula in the 2nd and 3rd year of investigation (+43%) but was not altered in the bulk samples for all species. Fertilizer addition generally stimulated above-ground (+48%) and below-ground (+26%) biomass production right from the beginning. Annual variations in weather conditions during summer also strongly influenced above-ground biomass production (19–27% more biomass in warm seasons compared to cool seasons). However, neither nutrient availability nor climate had a significant effect on the CO2 response of the plants. Our results do not support the hypothesis that alpine plants, due to their higher carbon uptake efficiency, will increase biomass production under future atmospheric CO2 enrichment, at least not in such late successional communities. However, as indicated by the response of P. alpina, species-specific responses occur which may lead to altered community structure and perhaps ecosystem functioning in the long-term. Our findings further suggest that possible climatic changes are likely to have a greater impact on plant growth in alpine environments than the direct stimulation of photosynthesis by CO2. Counter-intuitively, our results suggest that even under moderate climate warming or enhanced atmospheric nitrogen deposition positive biomass responses to CO2 enrichment of the currently dominating species are unlikely.  相似文献   

3.
The level of carbon dioxide (CO2) in the air can affect several traits in plants. Elevated atmospheric CO2 (eCO2) can enhance photosynthesis and increase plant productivity, including biomass, although there are inconsistencies regarding the effects of eCO2 on the plant growth response. The compounding effects of ambient environmental conditions such as light intensity, photoperiod, water availability, and soil nutrient composition can affect the extent to which eCO2 enhances plant productivity. This study aimed to investigate the growth response of Arabidopsis thaliana to eCO2 (800 ppm) under short photoperiod (8/16 h, light/dark cycle). Here, we report an attenuated fertilization effect of eCO2 on the shoot biomass of Arabidopsis plants grown under short photoperiod. The biomass of two-, three-, and four-week-old Arabidopsis plants was increased by 10%, 15%, and 28%, respectively, under eCO2 compared to the ambient CO2 (aCO2, 400 ppm) i.e. control. However, the number of rosette leaves, rosette area, and shoot biomass were similar in mature plants under both CO2 conditions, despite 40% higher photosynthesis in eCO2 exposed plants. The levels of chlorophylls and carotenoids were similar in the fully expanded rosette leaves regardless of the level of CO2. In conclusion, CO2 enrichment moderately increased Arabidopsis shoot biomass at the juvenile stage, whereas the eCO2-induced increment in shoot biomass was not apparent in mature plants. A shorter day-length can limit the source-to-sink resource allocation in a plant in age-dependent manner, hence diminishing the eCO2 fertilization effect on the shoot biomass in Arabidopsis plants grown under short photoperiod.  相似文献   

4.
5.
Root to shoot ratio of crops as influenced by CO2   总被引:1,自引:0,他引:1  
Crops of tomorrow are likely to grow under higher levels of atmospheric CO2. Fundamental crop growth processes will be affected and chief among these is carbon allocation. The root to shoot ratio (R:S, defined as dry weight of root biomass divided by dry weight of shoot biomass) depends upon the partitioning of photosynthate which may be influenced by environmental stimuli. Exposure of plant canopies to high CO2 concentration often stimulates the growth of both shoot and root, but the question remains whether elevated atmospheric CO2 concentration will affect roots and shoots of crop plants proportionally. Since elevated CO2 can induce changes in plant structure and function, there may be differences in allocation between root and shoot, at least under some conditions. The effect of elevated atmospheric CO2 on carbon allocation has yet to be fully elucidated, especially in the context of changing resource availability. Herein we review root to shoot allocation as affected by increased concentrations of atmospheric CO2 and provide recommendations for further research. Review of the available literature shows substantial variation in R:S response for crop plants. In many cases (59.5%) R:S increased, in a very few (3.0%) remained unchanged, and in others (37.5%) decreased. The explanation for these differences probably resides in crop type, resource supply, and other experimental factors. Efforts to understand allocation under CO2 enrichment will add substantially to the global change response data base.Abbreviations R:S root to shoot ratio, dry weight basis  相似文献   

6.
Methane efflux was studied in stands of three emergent macrophyte species (Equisetum fluviatile, Schoenoplectus lacustris and Phragmites australis) commonly found in the littoral zone of boreal lakes. In vegetation stands with relatively low methane (CH4) emissions (<0.3 mol m?2 (ice‐free period)?1), the seasonal variation of CH4 efflux was better correlated with the dynamics of plant growth than variation in sediment temperature. In dense and productive vegetation stands that released high amounts of CH4 (2.3–7.7 mol m?2 (ice‐free period)?1), the seasonal variation in CH4 efflux was correlated with sediment temperature, indicating that methanogens were more limited by temperature than substrate supply. The bottom type at the growth site of the emergent plants significantly influenced the ratio of CH4 efflux to aboveground biomass of plants (Eff : B). The lowest Eff : B ratio was found in E. fluviatile stands growing on sand bottom under experimental conditions and the highest in P. australis‐dominated littoral areas accumulating detritus from external sources. The future changes expected in the hydrology of boreal lakes and rivers because of climatic warming may impact the growth conditions of aquatic macrophytes as well as decomposition and accumulation of detritus and, thus, CH4 effluxes from boreal lakes.  相似文献   

7.
Seedlings of perennial ryegrass (Lolium perenne L. cv. Parcour)and white clover (Trifolium repens L. cv. Karina) grown at fivedifferent plant densities were exposed to ambient (390 ppm)and elevated (690 ppm) CO2 concentrations. After 43 d the effectsof CO2 enrichment and plant density on growth of shoot and root,nitrogen concentration of tissue, and microbial biomass carbon(Cmic) in soil were determined. CO2 enrichment of Lolium perenneincreased shoot growth on average by 17% independent of plantdensity, while effects on root biomass ranged between -4% and+ 107% due to an interaction with plant density. Since tilernumber per plant was unaffected by elevated CO2, the small responseof shoot growth to CO2 enrichment was atributed to low sinkstrength. A significant correlation between nitrogen concentrationof total plant biomass and root fraction of total plant drymatter, which was not changed by CO2 enrichment, indicates thatnitrogen status of the plant controls biomass partitioning andthe effect of CO2 enrichment on root growth. Effects of elevatedCO2 and plant density on shoot and root growth of Trifoliumrepens were not significantly interacting and mean CO2-relatedincrease amounted to 29% and 66%, respectively. However, growthenhancement due to elevated CO2 was strongest when leaf areaindex was lowest. Total amounts of nitrogen in shoots and rootswere bigger at 690 ppm than at 390 ppm CO2. There was a significantincrease in Cmic in experiments with both species whereas plantdensity had no substantial effect. Key words: CO2 enrichment, intraspecific competition, biomass partitioning, Lolium perenne, Trifolium repens, grassland  相似文献   

8.
The impact of climate warming on the littoral zone of a boreal lake ecosystem was studied experimentally for three growing seasons in two artificial ponds (10×27 m) and in replicated chamber experiments. One pond was enclosed in a plastic greenhouse and another untreated pond served as a reference system. During the growing seasons temperature in the greenhouse was maintained at levels 2–3 °C higher than ambient with a computer-controlled ventilation system. One growing season prior to initiation of the experiment, a vegetated littoral zone with equal densities of water horsetail (Equisetum fluviatile) was established in both ponds. Although changes occurred in the species dominance (E. fluviatile - Alisma plantago-aquatica - Sparganium erectum spp. microcarpum - Elodea canadensis) within the three years of the study, the emergent macrophytes emerged earlier and grew better in the warmer conditions of the greenhouse pond compared with those in the reference pond. The difference in above-ground biomass throughout the growing seasons was >2 fold and after three experimental growing seasons the difference in below-ground biomass of macrophytes was 2.5-fold between the ponds. In replicated chamber experiments the biomass growth of E. fluviatile was also significantly higher in a 2–3 °C higher temperature than under ambient conditions. An ecosystem-scale induced change, characterized by a heavy growth of filamentous algae (mainly chlorophytes) was evident in the vegetated littoral zone of the greenhouse pond. A hypothesis that macrophyte rhizomes function as `phosphorus pumps' from the sediment and thus accelerate eutrophication in a warmer climate should be further studied.  相似文献   

9.
Atmospheric CO2 enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO2 have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO2 enrichment and nitrogen supply deserve particular attention.Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75, 150 and 225 kg ha−1 and two CO2 concentrations (380 and 550 μmol mol−1) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUEprod.), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS).Overall, plant performance in the chambers was comparable to the development under field conditions. While CO2 responses were small in the plants receiving lowest N-levels, several significant N × CO2 interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO2 concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO2, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO2 exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUEprod. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO2 enrichment in the treatments with ample N supply.Obviously, under high N-supply, the CO2 fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO2 on flowering can be excluded, we assume that the increased growth under high N and CO2 supply created nutrient imbalances which hence affected flowering and seed set.Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO2, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO2. All the same, CO2 enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.  相似文献   

10.
Interactive effects of root restriction and atmospheric CO2 enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO2 partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO2 partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO2. In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO2 were not significantly different. Plants grown in small pots in 650 microbars of CO2 produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO2 was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO2 enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO2 concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO2.  相似文献   

11.
The inert perfluorochemical (PFC) liquid, perfluorodecalin (Flutec PP6), has been used to increase the CO2 supply to cultured shoots of Rosa chinensis Jacq. cv. Baby Love. Culture of shoots in semi-solid medium overlaying CO2-gassed PFC (2 mbar; 5 min repeated every 7 days) for up to 42 days, increased biomass as reflected by significant (P<0.01) increases in shoot number, number of leaves per shoot and mean shoot fresh weight. Additionally, there were significant (P<0.01) increases in the number of roots and their fresh and dry weights following a further 10 days of culture on rooting medium prior to transfer of plants to the glasshouse. Treatment of cultured rose shoots with CO2-gassed PFC also significantly reduced (P<0.01) the accumulation of phenolic compounds in roots. The total chlorophyll of aerial parts was unaffected, although total protein in shoots and roots was significantly (P<0.01) lower than in the control. The biotechnological implications of this novel cultural régime are discussed for the micropropagation of woody species. Received: 5 June 1996 / Revision received: 29 July 1996 / Accepted 19 August 1996  相似文献   

12.

Aims

Drought is a major growth limiting factor in the majority of terrestrial ecosystems and is expected to become more frequent in the future. Therefore, resolving the drought response of plants under changing climate conditions is crucial to our understanding of future ecosystem functioning. This study responds to the need for experimental research on the combined effects of warming, elevated CO2 and drought, and aims to determine whether the response to drought is altered under future climate conditions.

Methods

Two grassland species, Lolium perenne L. and Plantago lanceolata L., were grown in sunlit climate-controlled chambers. Four climates were simulated: (1) current climate, (2) current climate with drought, (3) a warmer climate with drought, and (4) a climate with combined warming, elevated CO2 and drought.

Results

Warming did not alter the drought response, neither directly through photosynthesis nor indirectly through changes in water consumption. Also for combined warming and elevated CO2 there were no effects on the plant response to drought for any of the measured parameters. However, simultaneous warming and elevated CO2 mitigated the biomass response to drought through a positive pre-drought effect on photosynthesis and biomass response.

Conclusions

Our results indicate that a positive pre-drought effect of combined warming and elevated CO2 has the potential to compensate for drought-induced biomass losses under future climate conditions.  相似文献   

13.
In autumn, agricultural perennial weeds prepare for winter and can store reserves into creeping roots or rhizomes. Little is known about influence of climate change in this period. We tested the effect of simulated climate change in autumn on three widespread and noxious perennial weeds, Elymus repens (L.) Gould, Cirsium arvense (L.) Scop. and Sonchus arvensis L. We divided and combined simulated climate change components into elevated CO2 concentration (525 ppm), elevated temperatures (+2–2.5°C), treatments in open‐top chambers. In addition, a control in the open‐top chamber without any increase in CO2 and temperature, and a field control outside the chambers were included. Two geographically different origins and three pre‐growth periods prior to the exposure to climate change factors were included for each species. All species increased leaf area under elevated temperature, close to doubling in E. repens and quadrupling in the dicot species. E. repens kept leaves green later in autumn. C. arvense did not benefit in below‐ground growth from more leaf area or leaf dry mass. S. arvensis had low levels of leaf area throughout the experiment and withered earlier than the two other species. Below‐ground plant parts of S. arvensis were significantly increased by elevated temperature. Except for root:shoot ratio of C. arvense, the effects of pure elevated CO2 were not significant for any variables compared to the open‐top chamber control. There was an additive, but no synergistic, effect of enhanced temperature and CO2. The length of pre‐growth period was highly important for autumn plant growth, while origin had minor effect. We conclude that the small transfer of enhanced above‐ground growth into below‐ground growth under climate change in autumn does not favour creeping perennial plants per se, but more leaf area may offer more plant biomass to be tackled by chemical or physical weed control.  相似文献   

14.
J. He  L. Qin  S. K. Lee 《Photosynthetica》2013,51(3):330-340
Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3 ?), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24–38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3 ? and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins.  相似文献   

15.
1. Annual and diel variations in methane (CH4) release in stands of Equisetum fluviatile were measured from June to November in Lake Pääjärvi, southern Finland, where E. fluviatile is the dominant emergent macrophyte. An estimate of total annual release of CH4 from stands of E. fluviatile in this lake was also made. Diel variation was measured twice (June and August), whereas measurements for annual variation were performed monthly. The hypothesis that a relationship exists between the productivity of stands and CH4 release was also tested, whereupon net ecosystem exchange (NEE) of CO2 as well as standing stock of E. fluviatile were determined, in addition to simultaneous recordings of air temperature and solar radiation. 2. Seasonal variations in CH4 release were pronounced, with the highest release rate of 813 mg m–2 day–1 measured in July and the lowest 6.5 mg m–2 day–1 in November, when the shoreline was already frozen. 3. Methane release rates were strongly correlated with mean air temperature in the measuring chambers and with total solar radiation. There was no significant correlation between the instantaneous radiation and CH4 release rates. 4. The seasonal patterns of CH4 release and NEE of CO2 resembled each other, except in July when NEE suddenly dropped. The decrease in NEE coincided with the highest CH4 release rate measured and the highest temperature during the measuring period, i.e. 32 °C outside and 37 °C inside the chamber. Excluding this date, daily CH4 release was strongly correlated with NEE (r2 = 0.971). 5. No diel changes in CH4 release rates were detected. In June and August the maximum release rates were 11.4 and 16.8 mg CH4 m–2 h–1, respectively. 6. The standing stock of E. fluviatile at different times of the growing season was not correlated with CH4 efflux; the CH4 release rates could be related neither to the number of shoots, i.e. sufficient conduits for gas transport were always present, nor to the shoot biomass in the measuring chambers. 7. For an estimate of the annual release, the monthly values measured at noon were integrated over the entire growing season; this resulted in 43.7 g CH4 m–2 for the annual emission. The total annual emission of CH4 from the area covered with E. fluviatile in Lake Pääjärvi was calculated to be ≈ 5000 kg. 8. Significant amounts of CH4 are released from stands of E. fluviatile in boreal lakes. The CH4 release rate follows a seasonal pattern but there is no diel pattern. Methane release rate can be related to temperature, solar radiation and NEE of CO2, but not to the standing stock of E. fluviatile or the number of shoots.  相似文献   

16.
The effect of controlled carbon dioxide environment on in vitro shoot growth and multiplication in Feronia limonia (a tropical fruit plant, Family- Rutaceae) was studied. Carbon dioxide available in the ambient air of the growth room was insufficient for in vitro growth of the shoots alone. Also, the presence of sucrose only as the C-source in the medium (without CO2), was found to be inadequate for sustainable growth and multiplication of shoots. The carbon dioxide enrichment promoted shoot multiplication and overall growth. The promotory effect of CO2 was independent of the presence of sucrose in the medium. In the presence of both CO2 and sucrose, an additive effect was observed producing maximum shoot growth. In the absence of sucrose a higher concentration of CO2 (10.0)g m−3 was required to achieve photoautotrophic shoot multiplication comparable to ambient air controls. Highest leaf area per shoot cluster promoting shoot growth and multiplication was recorded under this treatment. Shoots growing on sucrose containing medium under controlled CO2 environment of 0.6 g m−3 concentration evoked better response than ambient air controls (shoots growing on sucrose containing medium) in growth room. This treatment produced the overall best response. The present study highlighted the possibility of photoautotrophic multiplication which might prove useful for successful hardening and acclimatization in tissue culture plants.  相似文献   

17.
Warming, watering and elevated atmospheric CO2-concentration effects have been extensively studied separately; however, their combined impact on plants is not well understood. In the current research, we examined plant growth and physiological responses of three dominant species from the Eurasian Steppe with different functional traits to a combination of elevated CO2, high temperature, and four simulated precipitation patterns. Elevated CO2 stimulated plant growth by 10.8–41.7 % for a C3 leguminous shrub, Caragana microphylla, and by 33.2–52.3 % for a C3 grass, Stipa grandis, across all temperature and watering treatments. Elevated CO2, however, did not affect plant biomass of a C4 grass, Cleistogenes squarrosa, under normal or increased precipitation, whereas a 20.0–69.7 % stimulation of growth occurred with elevated CO2 under drought conditions. Plant growth was enhanced in the C3 shrub and the C4 grass by warming under normal precipitation, but declined drastically with severe drought. The effects of elevated CO2 on leaf traits, biomass allocation and photosynthetic potential were remarkably species-dependent. Suppression of photosynthetic activity, and enhancement of cell peroxidation by a combination of warming and severe drought, were partly alleviated by elevated CO2. The relationships between plant functional traits and physiological activities and their responses to climate change were discussed. The present results suggested that the response to CO2 enrichment may strongly depend on the response of specific species under varying patterns of precipitation, with or without warming, highlighting that individual species and multifactor dependencies must be considered in a projection of terrestrial ecosystem response to climatic change.  相似文献   

18.
Han Q  Kabeya D  Hoch G 《Annals of botany》2011,107(8):1405-1411

Background and Aims

Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations.

Methods

Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008.

Key Results

The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009.

Conclusions

Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations.  相似文献   

19.
Basic growth characteristics of two species of free-floating submerged carnivorous plants, the very rare and stenotopicAldrovanda vesiculosa and the very common and eurytopicUtricularia australis, were investigated in a 10/11-day field growth experiment within three nylon enclosures at two artificialAldrovanda sites in the T?eboň region, S Bohemia, Czech Republic, at the peak of a growing season. Growth ofAldrovanda was best at a meso-eutrophic site (biomass doubling time,T 2, 8.4–10.7 days, mean growth of new leaf whorls 0.96 whorls days?1, 1.6 developed branches per shoot) and slower at an oligo-mesotrophic site (T 2 17.2–21.5 days, growth of whorls 1.01 whorls days?1, 0.1–0.5 branches per shoot). Growth ofUtricularia was similar at both sites (T 2 19.8–33.2 days or 9.1–16.8 days, growth of whorls 3.1 or 2.7 whorls days?1, 1.5–2.1 or 0.8–1.4 developed branches per shoot at the former or latter site, respectively). Throughout the experiment, both species at the meso-eutrophic site allocated relatively more biomass to the production and growth of branches, than to that of new whorls. The results show thatAldrovanda, although usually considered as competitively weaker, can grow faster during the growing season peak thanUtricularia due to frequent branching and the subsequent rapid growth and separation of daughter shoots. Very rapid growth of rootless aquatic carnivorous plants in nutrient-poor habitats allows the consideration of ecophysiological adaptations that enable the plants to gain limiting mineral nutrients. These adaptations include carnivory, efficient nutrient reutilization from senescent shoots, and very high affinity for mineral nutrient uptake from water. Comparison of growth rates of rare and stenotopicA. vesiculosa and very common and eurytopicU. australis shows that differences in their rarity do not seem to be based on differences of growth rate.  相似文献   

20.
An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号