首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large magnitude (>10‰) carbon‐isotope (δ13C) excursions recorded in carbonate‐bearing sediments are increasingly used to monitor environmental change and constrain the chronology of the critical interval in the Neoproterozoic stratigraphic record that is timed with the first appearance and radiation of metazoan life. The ~10‰ Bitter Springs Anomaly preserved in Tonian‐aged (1000–720 Ma) carbonate rocks in the Amadeus Basin of central Australia has been offered as one of the best preserved examples of a primary marine δ13C excursion because it is regionally reproducible and δ13C values covary in organic and carbonate carbon arguing against diagenetic exchange. However, here we show that δ13C values defining the excursion coincide with abrupt lithofacies changes between regularly cyclic grainstone and microbial carbonates, and desiccated red bed mudstones with interbedded evaporite and dolomite deposits, recording local environmental shifts from restricted marine conditions to alkaline lacustrine and playa settings that preserve negative (?4‰) and positive (+6‰) δ13C values, respectively. The stratigraphic δ13C pattern in both organic and carbonate carbon recurs within the basin in a similar way to associated sedimentary facies, reflecting the linkage of local paleoenvironmental conditions and δ13C values. These local excursions may be time transgressive or record a relative sea‐level influence manifest through exposure of sub‐basins isolated by sea‐level fall below shallow sills, but are independent of secular seawater variation. As the shallow intracratonic setting of the Bitter Springs Formation is typical of other Neoproterozoic carbonate successions used to construct the present δ13C seawater record, it identifies the potential for local influences on δ13C excursions that are neither diagenetic nor representative of the global exogenic cycle.  相似文献   

2.
Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ?47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ?47 isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(?47)), δ18Ocarb, and calculated δ18Owater in isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.  相似文献   

3.
Biogenic calcretes associated with a regional Cretaceous to Paleogene subaerial unconformity and an intraformational composite (polygenic) surface in Upper Cretaceous intra-platform peritidal successions in central Dalmatia and eastern Istria, Croatia (Adriatic-Dinaridic Carbonate Platform), were analyzed for their δ13C and δ18O signatures in order to provide insight into the conditions of subaerial exposure and calcrete development. The distinctly negative δ13C signatures of biogenic calcretes marking the regional subaerial unconformity differ considerably from the δ13C values of the host marine limestones. This indicates carbon isotope exchange of primary marine CaCO3 with CO2 released by root and rhizomicrobial respiration and subsequent precipitation of pedogenic calcrete. The range of δ13C (from ?13.1 to ?8.2 ‰ Vienna PeeDee Belemnite standard, VPDB) and δ18O (from ?10.1 to ?6.1 ‰ VPDB) values of calcretes are similar to those reported from calcretes elsewhere, and the δ13C values of biogenic calcretes with typical Microcodium aggregates (?13.1 to ?12.3 ‰ VPDB) at the ?ibenik locality are very close to, or at the lower limit of, values for soil carbonates formed in isotopic equilibrium with soil CO2. These values are expected for authigenic pedogenic carbonates formed under the influence of C3 plant communities, without influence from heavier carbon from pre-existing carbonate and lack of input of atmospheric CO2. Such low δ13C values support the interpretation of Microcodium aggregates as being precipitated under a direct biological control within the soil, although the relationship between formation mechanisms and stable isotope signatures of Microcodium needs further investigation. The δ13C values (?4.4 to ?3.6 ‰ VPDB) of rhizogenic calcretes formed inside firmground Thalassinoides burrows of the composite surface at the ?ibenik locality are more negative than the δ13C values of the host marine limestones, which confirms that the composite surface went through a phase of meteoric pedo(dia)genesis. However, the overall δ13C values of calcretes are less negative than expected, which might reflect contamination from associated primary marine carbonate. This study represents the first detailed stable isotope investigation of calcretes from carbonate successions of the External Dinarides, and the results may be applied to discontinuities present in other shallow-water carbonate rock successions.  相似文献   

4.
The oxygen and carbon isotopic compositions of 108 modern shells of various bivalve species collected from cold seeps and hydrothermal vents were investigated in order to evaluate whether these parameters can provide information on environmental geochemical variability as well as on bivalve species and on the type of symbiotic bacteria present in their gills. The results show that the carbonate of bivalve shells from hydrothermal vents is characterized by abnormal positive δ13C values due to kinetic isotope effects, whereas the carbonate of bivalve shells from cold seeps exhibits positive as well as negative δ13C values suggesting that oxidized methane emitted by the seeping fluids may be incorporated in the shell. Comparison of the δ18O and δ13C values of bivalve shells hosting different chemosymbiotic bacteria suggests that each type of symbiosis is associated with a specific environment and bivalve species, indicating that there is a strong physiological/metabolic control on the incorporation of stable isotopes during the biomineralization process.  相似文献   

5.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

6.
Stable isotope and geochemical data are used here to differentiate between contemporaneous abiotic and microbial processes leading to formation of modern carbonate‐ (calcite, aragonite and magnesite) and silicate‐rich (kerolite) mineralization in basaltic sea caves on the island of Kauai, Hawaii. Strontium isotope and Ca/Sr ratios in meteoric water and cave carbonates suggest that the majority of Sr and Ca are derived from rock–water interaction within the host basalts situated above the caves. Oxygen and hydrogen isotope ratios and chemical compositions of cave and surface waters indicate that evaporation does not control cave‐water composition. However, evaporation of drops and thin films of water in microenvironments can lead to precipitation of some phases. This behaviour is suggested by the covariance in δ18O and δ13C values of some carbonates, especially magnesite, which is considered to be a late‐stage evaporative precipitate. Modelling of water evolution suggests that evaporation can be a cause of supersaturation for magnesite, kerolite and some Ca carbonates. However, the highly elevated δ13C values (up to +8.2) of some Ca carbonates, compared to average dissolved inorganic carbon δ13C values (~?12), are best explained as the product of microbial photosynthesis, in particular by cyanobacteria, present in the upper layers of active microbial mats on cave surfaces. The preferential uptake of 12C by cyanobacteria is recorded in the low δ13C values (?29.1 to ?22.6) of organic matter in mats and mineralized microbialites. The resulting 13C‐enrichment of dissolved inorganic carbon is recorded in the elevated δ13C values of these Ca carbonates. A positive correlation exists between the δ13C values of the carbonates and coexisting organic matter. The large enrichment in 13C of carbonate minerals, relative to dissolved inorganic carbon, and its covariance with the δ13C values of coexisting organic matter are useful for identification of carbonate‐rich mineralization resulting from autotrophic microbial activity.  相似文献   

7.
Question: The relationship between carbon‐13 in soil organic matter and C3 and C4 plant abundance is complicated because of differential productivity, litter fall and decomposition. As a result, applying a mass balance equation to δ13C data from soils cannot be used to infer past C3 and C4 plant abundance; only the proportion of carbon derived from C3 and C4 plants can be estimated. In this paper, we compare δ13C of surface soil samples with vegetation data, in order to establish whether the ratio of C3:C4 plants (rather than the proportion of carbon from C3 and C4 plants) can be inferred from soil δ13C. Location: The Tsavo National Park, in southeastern Kenya. Methods: We compare vegetation data with δ13C of organic matter in surface soil samples and derive regression equations relating the δ13C of soil organic matter to C3:C4 plant abundance. We use these equations to interpret δ13C data from soil profiles in terms of changes in inferred C3:C4 plant ratio. We compare our method of interpretation with that derived from a mass balance approach. Results: There was a statistically significant, linear relationship between the δ13C of organic matter in surface soil samples and the natural logarithm of the ratio of C3:C4 plants in the 100m2 surrounding the soil sample. Conclusions: We suggest that interpretation of δ13C data from organic matter in soil profiles can be improved by comparing vegetation surveys with δ13C of organic matter in surface soil samples. Our results suggest that past C3 plant abundance might be under‐estimated if a mass balance approach is used.  相似文献   

8.
The carbon isotope composition (δ13C) of C3/C4 mixed grassland is reflected in the δ13C of diet, hair or faeces of grazers, if 13C discrimination (13Δ) between grassland vegetation and these tissues is known and constant. However, these relationships could be modified by selective grazing or differential digestibility of the C3 and C4 components, potentially creating a bias between grassland and grazer tissue δ13C. Importantly, these factors have never been studied in detail. We investigated the relation between δ13C of C3/C4 grassland vegetation and that of faeces and hair of sheep in a 3-year (2005–2007) experiment in the Inner Mongolian semi-arid steppe. The experiment employed six stocking rates (0.375–2.25 sheep ha?1 year?1; four replications), which allowed for a large variation in species composition, digestibility, and diet selection. Faecal-nitrogen content, a proxy for digestibility, decreased from 1.9% to 1.5% during the grazing period due to aging of the herbage. At the same time, the C3/C4 ratio decreased due to the later growth initiation of C4 species. 13Δ between diet and faeces (13ΔDF; 0.6‰) and between diet and hair (13ΔDH; ?3.9‰) were not influenced by stocking rate, period in the season or C3/C4 ratio. Moreover, faeces–hair discrimination (13ΔFH; ?4.3‰), which reflects differences between digestibility of the C3 and C4 components, did not vary along the different gradients. The δ13C of grassland vegetation can be estimated from the δ13C of sheep faeces and hair, provided that 13Δ was accounted for. This is useful for landscape- or regional-scale investigations or reconstruction of C3/C4 vegetation distribution from faeces and hair, which provide different temporal and spatial integration of grassland isotope signals.  相似文献   

9.
Abstract We used differences in soil carbon δ13C values between forested sites and grasslands dominated by the C4 grass Schizachyrium scoparium (little bluestem) to detect the presence of former grasslands in the historical landscape of the coastal sand plain of Martha's Vineyard, Massachusetts, U.S.A. Soil δ13C was measured at (1) sites with long‐term forest or grassland vegetation and (2) sites with known histories where forest vegetation invaded grassland and where forest converted to grassland. The δ13C of soil under long‐term grassland was –24.1‰ at 0 to 2 cm depth and –23.4‰ at 2 to 10 cm and was enriched by 3.4‰ and 2.8‰ compared with soil under long‐term forest. In forests that invaded grasslands dominated by S. scoparium, soil δ13C decreased as C derived from trees replaced C from S. scoparium. This decline occurred faster in surface soils and in the light soil organic matter fraction than in the mineral soil. In forests that converted to grasslands, soil δ13C increased and the rate of increase was similar in surface and mineral soil and in the different soil organic matter fractions. Rates of change indicated that soil δ13C could be used to detect changes in vegetation involving the presence or absence of S. scoparium during the last 150 years. Application of this model to a potential grassland restoration site on Martha's Vineyard where the landscape history was not known indicated that the site was previously unoccupied by S. scoparium during this time. The δ13C of surface mineral soil can be useful for detecting the presence of historic S. scoparium grasslands but only in the period well after European settlement of these coastal sand plain landscapes.  相似文献   

10.
The structure and monomeric composition of the highly aliphatic and non-saponifiable fraction of cutans isolated from the leaf cuticles of Agave americana L. and Clivia miniata Reg. have been elucidated. Spectroscopic Fourier transform infrared and 13C-nuclear magnetic resonance, calorimetric and X-ray diffraction studies, together with biopolymer analysis after exhaustive ozonolysis, showed that the cutan fraction consists of an amorphous three-dimensional network linked by ether bonds containing double bonds and free carboxylic acid functions. Data obtained from fatty acid sorption indicated that the new biopolymer investigated here has a highly hydrophobic character constituting an additional barrier biopolymer in those cuticles where it is present. Labelled [14C]linoleic acid was preferentially incorporated into the non-ester part of C. miniata leaf disks in comparison with the cutin fraction of the cuticular membrane. This indicates that the cis-pentadiene system of polyunsaturated fatty acids is involved in the formation of intramolecular linkages, mainly ether bonds, of the aliphatic biopolymer. Received: 29 June 1998 / Accepted: 17 September 1998  相似文献   

11.
Recently we reported on the expansion of riparian forests into savannas in central Brazil. To enlarge the scope of the earlier study we investigated whether upland deciduous and xeromorphic forests behaved similarly. We investigated past vegetation changes that occurred in forest/savanna transitions using carbon isotope ratios (δ13C) measured in the soil organic matter as a tracer. We analyzed the 14C activity where δ13C showed major shifts in vegetation. The role of soil chemical and physical attributes in defining vegetation distribution is discussed. Structural changes in vegetation were found to be associated with shifts in the isotope composition (δ13C) of soil organic matter. This was attributed to intrinsic differences in the biomass of trees and grasses and allowed for the determination of past shifts in vegetation by evaluating δ13C at different depths. The deciduous forest decreased in area approximately 980 years ago. Tree cover increased in the xeromorphic forest, but the border stayed stable through time. The deciduous forest and adjacent savanna have eutrophic soils while the xeromorphic forest and adjacent savanna have dystrophic soils. However, greater organic carbon, nitrogen and phosphorus concentrations are observed in the forests. We provide concrete evidence of deciduous forest retreat unlike the stability observed in the xeromorphic forest/savanna boundary. These results contrast with the expansion of riparian forests recently reported in the same region.  相似文献   

12.
Aim The hair of grazers provides an isotopic record of environmental and nutritional signals. Here, we assess the effect of altitude on the carbon and nitrogen isotope composition of the hair of ruminant grazers and its relation to grassland vegetation, to evaluate the use of hair isotope data for ecosystem reconstruction, animal nutritional ecology and biogeochemical studies in montane environments. Location European Alps. Methods We sampled grassland vegetation (pure C3) and the hair of ruminants along an altitudinal gradient (400–2500 m), and analysed their isotope composition (δ13C and δ15N). Results were compared with published effects of altitude on 13C in C3 plants at the species level and on 15N at the community level. The study was complemented with a comparison of diet and hair isotope composition in ruminants held in confinement. Results δ13C of hair increased (c. 1.1‰ km−1) and δ15N decreased (c. 1.1‰ km−1) with altitude. The same changes occurred in local grassland vegetation, and in regional to global grassland data sets. Offsets between hair and vegetation 13C or 15N (‘diet–hair shift’) were independent of altitude. Sheep (Ovis aries) and cattle (Bos taurus) exhibited a 13C shift near +3‰, but that of goats (Capra hircus) was larger (+4.2‰) in alpine environments and in confinement. The diet–hair shift for 15N was more variable (+2.1 to +3.6‰). Main conclusions Grazer hair provides a faithful spatially and temporally integrated record of grassland isotope composition, useful for ecosystem and environment reconstruction. The effect of altitude on hair 15N is important for studies of trophic relationships: an altitude shift of 2000 m produced the same effect in hair 15N as would a shift from an animal tissue‐based to a plant‐based diet. The similarity of altitude effects on δ13C of individual plant species, vegetation and hair indicates that the effect of altitude on species‐level ‘intrinsic water use efficiency’ scales up linearly to the community and landscape level.  相似文献   

13.
The natural abundance of nitrogen (N) stable isotopes (δ15N) has the potential to enhance our understanding of the ecosystem N cycle at large spatial scales. However, vegetation and soil δ15N patterns along climatic and edaphic gradients have not yet been fully understood, particularly for high-altitude ecosystems. Here we determined vegetation and soil δ15N in alpine grasslands on the Tibetan Plateau by conducting four consecutive regional surveys during 2001–2004, and then examined their relationships with both climatic and edaphic variables. Our results showed that both vegetation and soil N in Tibetan alpine grasslands were more 15N-enriched than global averages. Vegetation δ15N did not exhibit any significant trend along the temperature gradient, but decreased significantly with an increase in precipitation amount. In contrast, soil δ15N did not vary with either mean annual temperature or precipitation. Our results also indicated that soil δ15N exhibited a slight increase with clay content, but decreased with soil carbon:nitrogen ratio. A general linear model analysis revealed that variations in vegetation δ15N were dominantly determined by climatic variables, whereas soil δ15N was related to edaphic variables. These results provide clues for potential climatic and edaphic regulations on ecosystem N cycle in these high-altitude regions.  相似文献   

14.
This study documents the petrology and stable isotope geochemistry of carbonates from six horizons from Beds I and II of Olduvai Gorge, Tanzania. The studied succession, immediately below and above Tuff IF, consists of interbedded waxy and earthy claystones with discrete carbonate horizons and thin sandstones. The succession was deposited in response to repeated flooding and withdrawal of a saline-alkaline lake. The carbonates and their overlying disconformities are important because they help define the surfaces on which hominin activity took place and allow very high-resolution correlation of geographically separated levels of hominin exploitation.The range of different carbonates includes unambiguous land-surface and pedogenic features including calcified rootmat horizons, rhizocretions, and micritic nodules, together with less determinate sparry calcite nodules. Stellate nodules are interpreted as pseudomorphs after sulfate-roses. The carbonate nodules are synsedimentary features, truncated by fluvial and other erosional surfaces. The isotopic composition of the carbonates is variable with δ18O ranging from −7.0‰ to −4.3‰, and δ13C from −8.5‰ to −1.6‰. A covariant increase in δ13C and δ18O repeats in each carbonate horizon and in individual nodules (inner to outer layers): it reflects the evolution of synsedimentary groundwaters. At times of low lake level, the carbonates started to precipitate from meteoric waters with low isotopic values and continued to form as lake levels rose and the waters became increasingly saline. Some of the samples have a last-stage cement of strontium rich dolomite, which supports late-stage flooding by the saline-alkaline lake. Previous studies of carbonate horizons from Olduvai have interpreted carbon isotope values in terms of changes in C3 and C4 plants that colonized the land surface. This study demonstrates that in some instances the isotope values from carbonates deposited in these lake marginal settings reflect changes in hydrology rather than vegetation.  相似文献   

15.
A lack of appropriate proxies has traditionally hampered our ability to distinguish riverine organic carbon (OC) sources at the landscape scale. However, the dissection of C4 grasslands by C3-enriched riparian vegetation, and the distinct carbon stable isotope signature (δ13C) of these two photosynthetic pathways, provides a unique setting to assess the relative contribution of riparian and more distant sources to riverine C pools. Here, we compared δ13C signatures of bulk sub-basin vegetation (δ13CVEG) with those of riverine OC pools for a wide range of sites within two contrasting river basins in Madagascar. Although C3-derived carbon dominated in the eastern Rianala catchment, consistent with the dominant vegetation, we found that in the C4-dominated Betsiboka basin, riverine OC is disproportionately sourced from the C3-enriched riparian fringe, irrespective of climatic season, even though δ13CVEG estimates suggest as much as 96% of vegetation cover in some Betsiboka sub-basins may be accounted for by C4 biomass. For example, δ13C values for river bed OC were on average 6.9 ± 2.7‰ depleted in 13C compared to paired estimates of δ13CVEG. The disconnection of the wider C4-dominated basin is considered the primary driver of the under-representation of C4-derived C within riverine OC pools in the Betsiboka basin, although combustion of grassland biomass by fire is likely a subsidiary constraint on the quantity of terrestrial organic matter available for export to these streams and rivers. Our findings carry implications for the use of sedimentary δ13C signatures as proxies for past forest-grassland distribution and climate, as the C4 component may be considerably underestimated due to its disconnection from riverine OC pools.  相似文献   

16.
Photosynthetic activity in carbonate‐rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ13CDIC values up to +6.0‰ above predicted carbon dioxide (CO2) equilibrium values, representing a biosignature of photosynthesis. Mat‐associated δ13Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ13C values reflected the balance between photosynthetic 13C‐enrichment and heterotrophic inputs of 13C‐depleted DIC. Mat microelectrode profiles identified oxic zones where δ13Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ13Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of 13C‐depleted DIC. δ13C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ13Corg values ranged from ?18.7 ± 0.1 to ?25.3 ± 1.0‰ with mean Δ13Cinorg‐org values ranging from 21.1 to 24.2‰, consistent with non‐CO2‐limited photosynthesis, suggesting that Precambrian δ13Corg values of ~?26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non‐limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic‐rich and hot spring microbial mats.  相似文献   

17.
  1. Shrub encroachment has far‐reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning.
  2. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound‐specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution.
  3. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n‐alkane distributions and the δ13C and δ13Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our δD record suggests physiological adaptations of woody species to higher atmospheric pCO2 concentration and drought, our vegetation records reflect the impact of broad‐scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling‐resistant taxa. In addition, grain‐size and spore records suggest changes in the erodibility of soils because of reduced grass cover.
  4. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.
  相似文献   

18.
Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ13C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ13C signatures. In the photic zone, the δ13Corg signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ13C signatures similar to DIC in the overlying water column (?2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate‐reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter‐scale variability in the δ13Corg signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ13Corg signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling.  相似文献   

19.
Manifestations of profound perturbations in biogeochemical systems during the Paleocene-Eocene thermal maximum (PETM) include a prominent global negative δ13C and a pronounced increase in the relative abundance of dinoflagellate cysts (dinocysts) assigned to the genus Apectodinium. While motile representatives of Apectodinium were most likely thermophilic and heterotrophic, the underlying causes of this dinoflagellate response are not well understood. Here we provide new insight by examining the palynology, chemistry and calcareous nannoplankton across the PETM in a continental slope section at Tawanui, New Zealand. Across the PETM, marked changes in the relative abundance of Apectodinium vary antithetically with significant changes in the δ13C of carbonate and organic matter. In general, the high relative abundance of Apectodinium relates to enhanced concentrations of dinocysts, signifying a ‘bloom’ of Apectodinium in surface waters during the PETM. Changes in Apectodinium and δ13C records correspond to variations in many other parameters, including a smaller negative shift in bulk carbonate δ13C than expected, increased terrestrial palynomorphs, elevated TOC and C/N ratios, lower carbonate contents, higher SiO2 and Al2O3 contents, and lower Si/Al ratios. All of these variations can be explained by an increase in delivery of terrigenous material to the continental margin. A peak in the relative abundance of Glaphyrocysta dinocysts at the onset of the PETM may indicate greater down slope transport of neritic material. Changes in calcareous nannoplankton abundances suggest increased nutrient availability in surface waters during the PETM. The combined results show that Apectodinium-dominated assemblages, global perturbations in carbon isotopes and enhanced terrigenous delivery closely correspond in time at Tawanui. A sudden and massive carbon injection to the ocean-atmosphere system may have enhanced weathering and increased terrigenous inputs to continental margins during the PETM. We further suggest that these inputs caused the Apectodinium acme by elevating primary productivity in marginal seas.  相似文献   

20.
Physiological mechanisms link the environment with population dynamics, and glucocorticoid hormones are of particular interest because they respond adaptively to environmental change and can influence vertebrate reproduction and fitness. We tested a novel approach of synchronizing feather-based measures of corticosterone (the primary avian glucocorticoid; CORTf) and ratios of stable isotopes (SIs) of C (δ13C) and N (δ15N) to provide information about environmental conditions and an integrated physiological response to those conditions over the same period of feather synthesis. Using a fragmented metapopulation of Dupont’s larks Chersophilus duponti, an endangered steppe songbird, we analyzed interrelationships among CORTf, δ13C, δ15N, and the physical environment, including measures of habitat loss and fragmentation. CORTf was not related to any habitat variable measured directly. However, we detected a significant spatial structure to CORTf values and food availability, with greater similarity in both at smaller spatial scales. Using SIs as proxies for the local environment, we found CORTf was negatively related to δ13C. Values of CORTf, δ13C, and the relationship between the two were likely driven by variation in agricultural land use surrounding lark habitat patches. Our feather-based approach revealed that individual physiology was sensitive to environmental conditions (e.g., an interaction of food availability and variation in habitat) at a local scale, but not patch or landscape scales. Combining CORTf and SIs may be a promising tool because it can provide individual-based information about habitat, physiology, and their relationship during the same time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号