首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular genetics of leaf senescence in Arabidopsis   总被引:12,自引:0,他引:12  
Leaf senescence is a developmentally programmed degeneration process that constitutes the final step of leaf development and is controlled by multiple developmental and environmental signals. In addition to the information obtained from other plants, Arabidopsis has, as a model system, contributed to our understanding of this complex phenomenon in molecular genetic terms. Recent discoveries have identified several genetic mutants and potential regulatory components in Arabidopsis. Identifying further mutants that exploit novel biological resources, screening Scheme and a global functional analysis of senescence-associated genes in Arabidopsis should increase our understanding of the complex regulatory networks.  相似文献   

2.
Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first‐generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands.  相似文献   

3.
4.
抗病原菌植物基因工程进展   总被引:5,自引:0,他引:5  
植物病原菌给农林生产带来巨大的损失,植物基因工程在培育抗病原菌植物方面是传统育种技术的补充和发展,短短几年,在抗细菌和抗真菌植物基因工程方面出现了一些全新的成功策略,这些范例都是针对病原菌的生理结构、致病机理及与植物的相互关系。本文概括论述了这些策略的基本思路并对其局限性加以探讨。随着植物病理学、植物分子生物学和病原菌分子生物学的研究进展,新的抗性策略将会出现。  相似文献   

5.
Discussions about evolutionary change in developmental processes or morphological structures are predicated on specific quantitative genetic models whose parameters predict whether evolutionary change can occur, its relative rate and direction, and if correlated change will occur in other related and unrelated structures. The appropriate genetic model should reflect the relevant genetical and developmental biology of the organisms, yet be simple enough in its parameters so that deductions can be made and hypotheses tested. As a consequence, the choice of the most appropriate genetic model for polygenically controlled traits is a complex tissue and the eventual choice of model is often a compromise between completeness of the model and computational expediency. Herein, we discuss several developmental quantitative genetic models for the evolution of development and morphology. The models range from the classical direct effects model to complex epigenetic models. Further, we demonstrate the algebraic equivalency of the Cowley and Atchley epigenetic model and Wagner's developmental mapping model. Finally, we propose a new multivariate model for continuous growth trajectories. The relative efficacy of these various models for understanding evolutionary change in developmental and morphological traits is discussed. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Should we undertake genetic research on intelligence?   总被引:1,自引:0,他引:1  
Newson A  Williamson R 《Bioethics》1999,13(3-4):327-342
Although the concept of intelligence is difficult to define, research has provided evidence for a significant genetic component. Attempts are now being made to use molecular genetic approaches to identify genes contributing to intelligence, and to determine the ways in which they interact with environmental variables. This research is then likely to determine the developmental pathways of intelligence, in an effort to understand mental handicap and learning disorders and develop new treatment strategies. This paper reviews research on the genetic basis of intelligence, and discusses the ethical concerns, including the role of genetic information, the value we place on intelligence and the allocation of resources. It will be argued that the objections raised are problematic, and that because of the value of this knowledge and the prospect of improving lives, this research is morally required. We will then provide a brief analysis of the issues raised by enhancement of intelligence using genetic technology, and will argue that there is no intrinsic difference between this and other means of optimising intelligence.  相似文献   

7.
Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high‐throughput assays. Here, we measured voluntary consumption of ethanol in ~3000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel. Extreme quantitative trait loci mapping identified 385 differentially segregating allelic variants located in or near 291 genes at P < 10?8. The effects of single nucleotide polymorphisms associated with voluntary ethanol consumption are sex‐specific, as found for other alcohol‐related phenotypes. To assess causality, we used RNA interference knockdown or P{MiET1} mutants and their corresponding controls and functionally validated 86% of candidate genes in at least one sex. We constructed a genetic network comprised of 23 genes along with a separate trio and a pair of connected genes. Gene ontology analyses showed enrichment of developmental genes, including development of the nervous system. Furthermore, a network of human orthologs showed enrichment for signal transduction processes, protein metabolism and developmental processes, including nervous system development. Our results show that the genetic architecture that underlies variation in voluntary ethanol consumption is sexually dimorphic and partially overlaps with genetic factors that control variation in feeding behavior and alcohol sensitivity. This integrative genetic architecture is rooted in evolutionarily conserved features that can be extrapolated to human genetic interaction networks.  相似文献   

8.
Johnson NA  Porter AH 《Genetica》2007,129(1):57-70
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.  相似文献   

9.
10.
莱茵衣藻(Chlamydomonas reinharditi)是一种遗传机制已研究比较清楚的模式植物。近年来,生物反应器是当今世界上各国生物技术研究的一个热点,随着生物技术的发展,已成功实现衣藻作为生物反应器生产重组蛋白及抗体,生产的部分产品已经实现了商品化,与其他生物反应器相比,其在外源基因表达水平和转基因植物安全性等方面有明显的优势,尤其是在控制转基因沉默和遗传稳定性方面展示了极大的优越性。因此,莱茵衣藻是一种具有很好发展前景的生物反应器,必将在未来的药用蛋白生物技术领域发挥重要作用。主要对提高基因在莱茵衣藻叶绿体中表达的策略,转化技术的特点及其未来的发展前景等方面进行了简单评述。  相似文献   

11.
The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. This article is part of a Special Issue entitled: Animal Models of Disease.  相似文献   

12.
13.
In one of the first genetic screens aimed at identifying induced developmental mutants, Nadine Dobrovolskaïa‐Zavadskaïa, working at the Pasteur Laboratory in the 1920s, isolated and characterized a mutation affecting Brachyury, a gene that regulates tail and axial development in the mouse. Dobrovolskaïa‐Zavadskaïa's analysis of Brachyury and other mutations affecting tail development were among the earliest attempts to link gene action with a tissue‐specific developmental process in a vertebrate. Her analyses of genes that interacted with Brachyury led to the discovery of the t‐haplotype chromosome of mouse. After 70 years, Brachyury and the multiple genes with which it interacts continue to occupy a prominent focus in developmental biology research. A goal of this review is to identify the contributions that Dobrovolskaïa‐Zavadskaïa made to our current thinking about Brachyury and how she helped to shape the dawn of the field of developmental genetics. BioEssays 23:365–371, 2001. © 2001 John Wiley & Sons, Inc.  相似文献   

14.
Using the gene engineering methods, one can construct simple artificial gene networks with two stable functioning regimes (bistable genetic systems). Such genetic systems make it possible for cells with identical genotype to inherit two alternative phenotypes. The toggle switch is just one of the types of bistable genetic systems. In this work, we investigate the inheritance and switching of toggle switch functioning regimes in the cells at different culture growth phases. It is shown that during transition into the stationary growth phase the inheritance of stable states is disturbed and variations in the toggle-switching rate are more possible in different cells. Also, simultaneous expression of two genes of the system has been experimentally modelled. According to our results, the culture growth phase in this period determines later on the ratio between cell phenotypes in a population.  相似文献   

15.
Research using Xenopus laevis has made enormous contributions to our understanding of vertebrate development, control of the eukaryotic cell cycle and the cytoskeleton. One limitation, however, has been the lack of systematic genetic studies in Xenopus to complement molecular and cell biological investigations. Work with the closely related diploid frog Xenopus tropicalis is beginning to address this limitation. Here, we review the resources that will make genetic studies using X. tropicalis a reality.  相似文献   

16.
17.
During Drosophila development networks of genes control the developmental pathways that specify cell fates. The Notch gene is a well characterized member of some cell fate pathways, and several other genes belonging to these same pathways have been identified because they share a neurogenic null phenotype with Notch. However, it is unlikely that the neurogenic genes represent all of the genes in these pathways. The goal of this research was to use a genetic approach to identify and characterize one of the other genes that acts with Notch to specify cell fate. Mutant alleles of genes in the same pathway should have phenotypes similar to Notch alleles and should show phenotypic interactions with Notch alleles. With this approach we identified the deltex gene as a potential cell fate gene. An extensive phenotypic characterization of loss-of-function deltex phenotypes showed abnormalities (such as thick wing veins, double bristles and extra cone cells) that suggest that deltex is involved in cell fate decision processes. Phenotypic interactions between deltex and Notch as seen in double mutants showed that Notch and deltex do not code for duplicate functions and that the two genes function together in many different developing tissues. The results of these investigations lead to the conclusion that the deltex gene functions with the Notch gene in one or more developmental pathways to specify cell fate.  相似文献   

18.
A simple way to think of evolutionary trade-offs is to suppose genetic effects of opposed direction that give rise to antagonistic pleiotropy. Maintenance of additive genetic variability for fitness related characters, in association with negative correlations between these characters, may result. In the cactophilic species Drosophila buzzatii, there is evidence that second-chromosome polymorphic inversions affect size-related traits. Because a trade-off between body size and larval developmental time has been reported in Drosophila, we study here whether or not these inversions also affect larva-adult viability and developmental time. In particular, we expect that polymorphic inversions make a statistically significant contribution to the genetic correlation between body size (as measured by thorax length) and larval developmental time. This contribution is expected to be in the direction predicted by the trade-off, namely, those flies whose karyotypes cause them to be genetically larger should also have a longer developmental time than flies with other karyotypes. Using two different experimental approaches, a statistically significant contribution of the second-chromosome inversions to the phenotypic variances of body size and developmental time in D. buzzatii was found. Further, these inversions make a positive contribution to the total genetic correlation between the traits, as expected by the suggested trade-off. The data do not provide evidence as to whether the genetic correlation is due to antagonistic pleiotropic gene action or to gametic disequilibrium of linked genes that affect one or both traits. The results do suggest, however, a possible explanation for the maintenance of inversion polymorphism in this species.  相似文献   

19.
The adult Drosophila melanogaster body develops from imaginal discs, groups of cells set-aside during embryogenesis and expanded in number during larval stages. Specification and development of Drosophila imaginal discs have been studied for many years as models of morphogenesis. These studies are often based on mutations with large developmental effects, mutations that are often lethal in embryos when homozygous. Such forward genetic screens can be limited by factors such as early lethality and genetic redundancy. To identify additional genes and genetic pathways involved in leg imaginal disc development, we employed a Genome Wide Association Study utilizing the natural genetic variation in leg proportionality found in the Drosophila Genetic Reference Panel fly lines. In addition to identifying genes already known to be involved in leg development, we identified several genes involved in pathways that had not previously been linked with leg development. Several of the genes appear to be involved in signaling activities, while others have no known roles at this time. Many of these uncharacterized genes are conserved in mammals, so we can now begin to place these genes into developmental contexts. Interestingly, we identified five genes which, when their function is reduced by RNAi, cause an antenna-to-leg transformation. Our results demonstrate the utility of this approach, integrating the tools of quantitative and molecular genetics to study developmental processes, and provide new insights into the pathways and networks involved in Drosophila leg development.  相似文献   

20.
The Aspergillus nidulans fluG gene is necessary for the synthesis of a small diffusible factor that is required for the endogenously regulated induction of asexual sporulation that takes place during the development of an air-exposed colony. Previous work established that FluG is present at nearly constant levels throughout the Aspergillus life cycle, leading to the hypothesis that FluG factor is constitutively produced and development initiates after its concentration surpasses a fixed threshold. Here we show that overexpression of fluG can overcome the developmental block normally imposed on vegetative cells in submerged culture and leads to the formation of complex conidiophores that are remarkably similar to wild-tye conidiophores made by air- exposed colonies. This fluG-induced sporulation requires the activities of other early developmental regulatory genes including, flA, flB, flC, flD, flE, and brlA. The requirement for flbA in fluG-induced sporulation is particularly interesting because overexpression of flbA can also induce sporulation in submerged culture and this flbA activity requires fluG. The interdependence of fluG and flbA activities suggests a close relationship between the products of these two genes in controlling conidiophore development. In addition to the endogenous sporulation signal provided by fluG, several environmental factors, including air exposure, carbon or nitrogen stress, and increased osmolarity, can influence developmental activation. We demonstrate that each of these signals requires the brlA beta gene, but not brlA alpha, to initiate conidiophore development. We present a model to account for the complex genetic and environmental controls leading to the activation of brlA beta and sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号