首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.  相似文献   

2.
One of the most remarkable observations stemming from the sequencing of genomes of diverse species is that the number of protein-coding genes in an organism does not correlate with its overall cellular complexity. Alternative splicing, a key mechanism for generating protein complexity, has been suggested as one of the major explanation for this discrepancy between the number of genes and genome complexity. Determining the extent and importance of alternative splicing required the confluence of critical advances in data acquisition, improved understanding of biological processes and the development of fast and accurate computational analysis tools. Although many model organisms have now been completely sequenced, we are still very far from understanding the exact frequency of alternative splicing from these sequenced genomes.This paper will highlight some recent progress and future challenges for functional genomics and bioinformatics in this rapidly developing area.  相似文献   

3.
The concept of protein function is widely used and manipulated by biologists. However, the means of the concept and its understanding may vary depending on the level of functionality one considers (molecular, cellular, physiological, etc.). Genomic studies and new high-throughput methods of the post-genomic era provide the opportunity to shed a new light on the concept of protein function: protein-protein interactions can now be considered as pieces of incomplete but still gigantic networks and the analysis of these networks will permit the emergence of a more integrated view of protein function. In this context, we propose a new functional classification method, which, unlike usual methods based on sequence homology, allows the definition of functional classes of protein based on the identity of their interacting partners. An example of such classification will be shown and discussed for a subset of Saccharomyces cerevisiae proteins, accounting for 7% of the yeast proteome. The genome of the budding yeast contains 50% of protein-coding genes that are paralogs, including 457 pairs of duplicated genes coming probably from an ancient whole genome duplication. We will comment on the functional classification of the duplicated genes when using our method and discuss the contribution of these results to the understanding of function evolution for the duplicated genes.  相似文献   

4.
Liu W  Fang L  Li M  Li S  Guo S  Luo R  Feng Z  Li B  Zhou Z  Shao G  Chen H  Xiao S 《PloS one》2012,7(4):e35698
Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages.  相似文献   

5.
6.
7.
Hamilton JJ  Reed JL 《PloS one》2012,7(4):e34670
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.  相似文献   

8.
The study of the 3D architecture of chromosomes has been advancing rapidly in recent years. While a number of methods for 3D reconstruction of genomic models based on Hi-C data were proposed, most of the analyses in the field have been performed on different 3D representation forms (such as graphs). Here, we reproduce most of the previous results on the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of these results can be reproduced in sparse reconstructions, generated from a small fraction of the experimental data (5% of the data), and study the properties of such models. Finally, we propose for the first time a novel approach for improving the accuracy of 3D reconstructions by introducing additional predicted physical interactions to the model, based on orthologous interactions in an evolutionary-related organism and based on predicted functional interactions between genes. We demonstrate that this approach indeed leads to the reconstruction of improved models.  相似文献   

9.
Developmental biology of zebrafish myeloid cells   总被引:7,自引:0,他引:7  
The zebrafish (Danio rerio) has emerged as an informative vertebrate model for developmental studies, particularly those employing genetic approaches such as mutagenesis and screening. Zebrafish myelopoiesis has recently been characterized, paving the way for the experimental strengths of this model organism to contribute to an improved understanding of the genetic regulation of myeloid development. Zebrafish have a multi-lineage myeloid compartment with two types of granulocyte (heterophil/neutrophil and eosinophil granulocytes), and monocyte/macrophages, each with characteristic morphological features and histochemical staining properties. Molecular markers have been characterised for various myeloid cell types and their precursor cells, for example: stem cells (scl, hhex, lmo2), myeloid lineage precursors (spi1/pu.1, c/ebp1), heterophil granulocytes (mpx/mpo), macrophages (L-plastin, fms). In zebrafish, the sites of early myeloid and erythroid commitment are anatomically separated, being located in the rostral and caudal lateral plate mesoderm respectively. Functional macrophages appear before cells displaying granulocytic markers. By the second day of life, cells expressing granulocyte- and macrophage-specific genes are scattered throughout the embryo, but tend to aggregate in the ventral venous plexus, which may be a site of their production or a preferred site for their residence. Even in early embryos, macrophages are phagocytically active, and granulocytes participate in acute inflammation. Equipped with an understanding of the developmental biology of these various myeloid cells and a set of tools for their identification and functional study, we will now be able to exploit the experimental strengths of this model organism to better understand the genetic regulation of myelopoiesis.  相似文献   

10.
王文静  李素  肖书奇  仇华吉 《微生物学报》2018,58(11):1897-1907
病毒作为严格的细胞内寄生生物,需要多种宿主蛋白辅助其完成生命周期。寻找与病毒复制相关的宿主因子并揭示其作用机制,将有助于阐明病毒的感染机制,为疫病的防治提供新靶标。与RNA干扰技术相比,近年来兴起的CRISPR/Cas9技术能更特异、高效、准确地实现基因组编辑,因而在功能基因研究中得到更广泛应用。而基于CRISPR/Cas9系统的宿主全基因组sgRNA文库高通量筛选技术平台,可快速发现参与病毒侵入、复制等生物学过程的关键宿主因子,通过明确病毒-宿主分子相互作用进而揭示病毒的生命周期,为分子病毒学和免疫学提供了强大的研究工具。本文主要总结了基于CRISPR/Cas9技术的高通量筛选平台的具体筛选流程,归纳和讨论了该平台在筛选调控病毒复制相关宿主因子中的应用现状和发展前景。  相似文献   

11.
Malaria remains a leading cause of death due to infectious disease. The completion of the Plasmodium falciparum genome sequencing project and release of preliminary proteomics data have significantly increased our understanding of the biology of this organism. Nonetheless, additional tools for functional analysis of this massive amount of information are now indispensable to further understand the basic biology of this parasite. The genetic manipulation of specific genes via the use of plasmid constructs and transfection represents one such tool.  相似文献   

12.
Current theories of breast cancer progression have been greatly influenced by the development and refinement of mouse transgenic and gene targeting technologies. Early transgenic mouse models confirmed the involvement of oncogenes, previously implicated in human breast cancer, by establishing a causal relationship between overexpression or activation of these genes and mammary tumorigenesis. More recently, the importance of genes located at sites of loss of heterozygosity in human breast cancer have been examined in mice by their targeted disruption via homologous recombination. The union of these two approaches allows the generation of complex animal models that more accurately reflect the multistep nature of human breast cancer. This review will examine how the study of transgenic mice has increased our understanding of the molecular events responsible for oncogenic transformation of the mammary gland. BioEssays 22:554-563, 2000.  相似文献   

13.
Molecular cloning of calcium channel subunit genes has identified an unexpectedly large number of genes and splicing variants, and a central problem of calcium channel biology is to now understand the functional significance of this genetic complexity. While electrophyisological, pharmacological, and molecular cloning techniques are providing one level of understanding, a complete understanding will require many additional kinds of studies, including genetic studies done in intact animals. In this regard, an intriguing variety of episodic diseases have recently been identified that result from defects in calcium channel genes. A study of these diseases illustrates the kind of insights into calcium channel function that can be expected from this method of inquiry.  相似文献   

14.
Complete mapping of the genome in a number of organisms provides a challenge for experimental nephrologists to identify potential functions of a vast number of new genes in the kidney. Since knockout technologies have evolved in the early eighties the mouse has become a valuable model organism. Researchers can now artificially eliminate the expression of specific genes in a mammalian organism and examine the phenotype. New developments have emerged that allow investigators to knock out a gene specifically in the kidney. Several kidney-specific promoters provide valuable tools and bacterial artificial chromosome (BAC) based techniques like recombineering will enhance both number and accuracy of new mouse lines with spatially controlled gene expression. In addition to spatial control, tetracycline- or tamoxifen-inducible systems, provide the possibility of influencing the temporal expression pattern of a gene enabling researchers to dissect its functions in adult organisms. Knocking out a gene will continue to be the gold standard for defining the role of a specific gene whereas tissue-specific gene knockdown using RNA interference represents an alternative approach for generating lower-priced and fast loss of function models. In addition to reverse genetic approaches, forward genetic techniques like random mutagenesis in mice continue to evolve and will enhance our understanding of disease mechanisms in the kidney.  相似文献   

15.
Ito M  Kawano K  Miyagishi M  Taira K 《FEBS letters》2005,579(26):5988-5995
Progress is being made in the development of RNA interference-based (RNAi-based) strategies for the control of gene expression. It has been demonstrated that small interfering RNAs (siRNAs) can silence the expression of target genes in a sequence-specific manner in mammalian cells. Various groups, including our own, have developed systems for vector-mediated specific RNAi. Vector-based siRNA- (or shRNA) expression libraries directed against the entire human genome and siRNA libraries based on chemically synthesized oligonucleotides now allow the rapid identification of functional genes and potential drug targets. Use of such libraries will enhance our understanding of numerous biological phenomena and contribute to the rational design of drugs against heritable, infectious and malignant diseases.  相似文献   

16.
A review of mitosis in the fission yeast Schizosaccharomyces pombe   总被引:2,自引:0,他引:2  
Mitosis and cell division are the final events of the cell cycle, resulting in the precise segregation of chromosomes into two daughter cells. A highly controlled and accurate segregation of the chromosomes is required to ensure that each daughter cell receives a complete genome and remains viable. The fission yeast, Schizosaccharomyces pombe, is a unicellular eukaryotic organism which is particularly convenient for investigating these problems. It is very amenable to genetic analysis and its predominantly haploid life cycle has allowed the isolation of recessive temperature-sensitive mutants unable to complete the cell cycle. Classical genetic analysis of these mutants has been used to identify over 40 gene functions that are required for cell cycle progress in S. pombe. Many of these genes have now been cloned and sequenced and in some cases the encoded gene product has been identified. This approach, coupling classical and molecular genetics, allows identification of the molecules important in the mitotic processes and provides a means for establishing what functional roles they may play.  相似文献   

17.
Real-space refinement has been previously introduced as a flexible fitting method to interpret medium-resolution cryo-EM density maps in terms of atomic structures. In this way, conformational changes related to functional processes can be analyzed on the molecular level. In the application of the technique to the ribosome, quasiatomic models have been derived that have advanced our understanding of translocation. In this article, the choice of parameters for the fitting procedure is discussed. The quality of the fitting depends critically on the number of rigid pieces into which the model is divided. Suitable quality indicators are crosscorrelation, R factor, and density residual, all of which can also be locally applied. The example of the ribosome may provide some guidelines for general applications of real-space refinement to flexible fitting problems.  相似文献   

18.
Caspase-independent cell deaths have been observed in many species including the human. However, the molecular mechanisms which govern them are largely unknown. Our present work makes use of a model organism, the protist Dictyostelium discoideum, which displays a caspase-independent cell death during its development. In rich medium, Dictyostelium multiplies vegetatively as a unicellular organism, but in starvation conditions, Dictyostelium cells aggregate, differentiate and morphogenize into a multicellular structure, called sorocarp, containing a mass of spores supported by a stalk. Cells in the stalk are considered dead on the basis of non-regrowth in a rich medium and are vacuolized. This programmed cell death is therefore developmental and vacuolar, and in addition, caspase-independent since the Dictyostelium genome does not contain caspases genes. In order to study in detail this cell death without induction of development, an in vitro experimental protocol has been adopted, which enabled us to describe the cascade of morphological events during this cell death. An insertional mutagenesis approach, followed by appropriate selection or screening of mutants potentially resistant to death, attempted at establishing the cascade of molecular events leading to vacuolar death of Dictyostelium cells. A better understanding of alternative death pathways may allow to control different types of cell deaths in the cases of cancers or neurodegenerative diseases. In this short review, we will discuss briefly some generalities about the development of Dictyostelium in starvation conditions, and we will focus on the course of programmed cell death in Dictyostelium and on the genetic tools used to elucidate the corresponding molecular mechanisms.  相似文献   

19.
The fission yeast Schizosaccharomyces pombe is a model organism used widely to study various aspects of eukaryotic biology. A collection of heterozygous diploid strains containing individual deletions in nearly all S. pombe genes has been created using a PCR based strategy. However, deletion of some genes has not been possible using this methodology. Here we use an efficient knockout strategy based on plasmids that contain large regions homologous to the target gene to delete an additional 29 genes. The collection of deletion mutants now covers 99% of the fission yeast open reading frames.  相似文献   

20.
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号