首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epiphytic and epixylic lichen flora of natural forests was recorded in different parts of Estonia. Altogether 232 taxa of lichens, lichenicolous fungi, or non-lichenized fungi were recorded, 10 of them listed in the Estonian Red Data Book. We found regional differences in lichen species composition and diversity caused by differences in the forest types. The tree-species-rich boreo-nemoral forests had the most diverse lichen flora, while the boreal forest dominated by coniferous trees or birch had the lowest diversity. The stand age proved to be significant in regard to the number of lichen species in a forest. The most remarkable effect on the diversity of forest lichen species was caused by the presence of Populus tremula. Aspen had the highest number of lichen species on the basal trunk and twigs, and also the highest number of host-specific lichen species.  相似文献   

2.
We present long-term (1993–2010) monitoring results of lichens from a remote site in Austria. Whereas gaseous pollution is negligible in this area, levels of long-range air pollution of S and N via rain and fog are high. Lichen cover on tree trunks have decreased significantly. Accordingly, we found that the population of all species had declined. The analyses demonstrated significant changes in lichen community composition. The lichen flora suffered a significant decrease in diversity. Our hypothesis is that the breakdown of epiphytic lichens is mainly due to eutrophication through long-term N deposition, and more particularly to ammonia in precipitation and in fog. Since many areas in the European Alps receive high wet deposition loads, a decrease in the abundance and diversity of epiphytic lichens is most probably a widespread phenomenon.  相似文献   

3.
Dietrich M., Bürgi-Meyer K., Bergamini A., Scheidegger C. and Stofer S. 2008. The Forest of Kriens (canton of Lucerne): A valuable habitat for many threatened lichens of Switzerland. Bot. Helv. 118: 149 – 164. In Switzerland almost half of the epiphytic lichen species are listed as threatened. Lichens, especially epiphytic species, contribute significantly to the biological diversity of forest ecosystems. Many of them are important indicator species and thus used for designing successful conservation strategies in woodlands. This study documents the importance of the Forest of Kriens near the city of Lucerne (Central Switzerland) as a habitat for epiphytic lichens. A rich flora comprising 182 species was recorded, thirty seven species being threatened in Switzerland and four being protected at the national level. Chaenotheca sphaerocephala, Micarea xanthonica and Psilolechia clavulifera are reported for the first time from Switzerland. More than sixty recorded lichen species are indicators of environmental continuity in woodlands. The sub-oceanic-montane climate at this north-facing slope at the border of the Northern Pre-Alps and the extensive, close to nature forest management, which guarantees environmental continuity, facilitate a high species diversity among epiphytic lichens. Thus, the Forest of Kriens is an important refuge for endangered species whence they might invade lichen-impoverished areas of the Central Plateau. For several epiphytic lichen species it represents the only known locality in the canton of Lucerne and one of few in Switzerland. Eingereicht am 21. Juni 2008, Angenommen am 24. September 2008 Redaktion: A. Leuchtmann  相似文献   

4.
Epiphytic lichen vegetation onFagus sylvatica sas studied in 4 sites along an altitudinal gradient from 930 to 1500 m on SE facing slopes of Mount Olympos (Greece). The crucial factor determining the spatial heterogeneity of epiphytic lichens onF. sylvatica is the altitude and not the height on the trunk at which lichen community is established. 17 out of 26 taxa are confined to a particular elevation range, while another three are clearly ubiquitous in their distribution. The number of lichen species at breast height is higher than at the base of the trunks. The results were compared with those gathered earlier in an analogous study on the vertical distribution of epiphytic lichens onPinus nigra along an altitudinal gradient from 750 to 1510 m of the same mountain. Comparison suggests that spatial heterogeneity of epiphytic lichens onF. sylvatica is different from the one onP. nigra.  相似文献   

5.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.  相似文献   

6.
附生地衣是森林附生植物的重要类群之一, 在维护森林生态系统的物种多样性以及水分和养分循环等方面发挥着重要作用。作者于2005年12月至2006年5月利用树干取样法调查了云南哀牢山徐家坝地区原生山地常绿阔叶林及其次生群落栎类萌生林、滇山杨(Populus bonatii)林和花椒(Zanthoxylum bungeanum)人工林中525株不同种类和径级树木距地面 0–2.0 m处附生地衣的组成和分布, 并收集了各个群落地面上凋落的地衣, 分析了林冠层附生地衣的物种组成。研究结果表明, 该区森林中附生地衣物种比较丰富。共收集到附生地衣61种, 分属17科29属, 其中原生林、栎类萌生林、滇山杨林和花椒人工林分别有51、53、46和23种。在树干距地面 0–2.0 m位置, 各群落中的附生地衣组成明显不同;但在林冠层中, 各群落内的附生地衣基本相似。原生林中附生地衣种类较多, 但分布不均匀。树干附生地衣的Shannon-Wiener和Simpson多样性指数以栎类萌生林最高, 分别为2.71和0.89;花椒林和滇山杨林次之, 分别为2.43–2.45和0.88–0.89;原生林最低, 为1.25和0.67。树干方位、宿主种类和宿主径级等都对附生地衣的物种组成和多样性有着重要影响, 附生地衣更多地出现于树干南向方位, 云南越桔(Vaccinium duclouxii)的附生地衣最为丰富, 胸径5.0–25.0 cm的树木上附生地衣较多。哀牢山山地森林群落中丰富的附生地衣种类及物种多样性在维系本区山地森林生态系统生物多样性格局方面具有重要的作用。  相似文献   

7.
During three years of research on epiphytic lichen communities as indicators of environmental change in northern Thailand plots were set up in a range of forest types between 400 and 1600 m in 1991/2 and revisited in 1993. Other areas were visited in 1993 and collections made in a wider range of geographical, altitudinal and vegetation conditions in Thailand. From this data factors influencing the distribution of lichens in a monsoon climate are outlined and characteristic components of the lichen flora given at family, generic and where possible specific level. Dominant taxa of the montane forests include hygrophilous macrolichens of the 'Lobarion' that are also a characteristic component of old growth fagaceous forests in Europe, whereas the evergreen forests are dominated by moisture-dependent crustose taxa with a trentepohlioid photobiont, and the deciduous dipterocarp forests by often brightly coloured xerophytic lichens with a trebouxioid photobiont. Taxa are proposed as indicators of forest type including those that are indicators of old-growth forests and of disturbance. Quantitative recording of selected taxa at genus and species level is suggested to estimate rates of change in monsoon forests in southeast Asia.  相似文献   

8.
Evaluation of the lichen flora of the Northern Andes must be based on a restricted number of better-known groups, probably less than 25% of the flora. This is because our knowledge of the taxonomy and distribution of lichens in the Tropics is still very incomplete. In the Andes, the groups with foliose and fruticose growth forms are particularly well represented; the crustose group seems less important. This is in contrast with the surrounding lowlands, where crustose is the dominant growth form. At higher taxonomic levels there is a resemblance in taxonomic composition with the cooler zones of the world, which disappears at the generic or sectional levels. A conspicuous morphological feature is the frequency of foliose lichens with linear, rhizinate, or ciliate lobes, probably an adaptation to very humid conditions. More than half of the species have a wide distribution throughout the Tropics or at least in the Neotropics. Among the more restricted taxa is a humid montane element. At the highest elevations a temperate element is apparent, usually with bicentric distribution in both hemispheres. Perhaps 10% of the species are known only from the region; local endemism is probably very scarce. A few taxa appear to be restricted to Ecuador and southern Colombia or Venezuela; so far, only a single species is known with certainty to be restricted to the humid paramos of Colombia. There are distinct affinities with the lichen flora of southeastern Brazil and the Caribbean-Central American area but not with the adjacent Guayana Highland.  相似文献   

9.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

10.
Host species has an important influence on the distribution of epiphytic lichens in forests. However, the importance of non-dominant trees in shaping lichen communities has been poorly studied owing to the relative rarity of individuals. The importance of dominant and non-dominant trees for distribution of epiphytic lichens was determined in eight subtropical forests in southwestern China. Dominant trees supported more abundant total and exclusive lichen species only in secondary forests. The occurrence of non-dominant trees promoted lichen diversity within forest types and influenced lichen communities on both tree groups. The effects of total tree species on lichen distribution largely resulted from the presence of non-dominant trees. Dominant and non-dominant trees supported distinct lichen assemblages within forest types, and ordination analyses showed a clear separation. Our study, therefore, reinforces the importance of non-dominant trees for conserving epiphytic lichens, and highlights that lichen assemblages are shaped by both dominant and non-dominant trees.  相似文献   

11.
The species richness of epiphytic lichens is continuously decreasing by degradation and loss of habitat. Considering that taxonomic identification of all species is time and resource consuming, rapid assessment methods to extrapolate the total number of species are needed for practical conservation. This paper describes an alternative method using the correlation between lichens growth forms and species richness. The study was conducted in 406 forest stands located in Central Spain, covering a wide range of mediterranean-climate ecosystem regions, management intensity levels, canopy cover conditions, and tree sizes. The presence/absence of epiphytic lichens was determined in 6090 trees, which were dominated by oak species (Quercus ilex, Q. faginea, and Q. pyrenaica). In all type of forests, the diversity of growth forms was positively correlated with the total epiphytic lichen richness. In all cases, species richness increased in non-managed forest stands with dense canopies. Thus, we propose the use of lichen growth forms as a helpful surrogate of species richness to detect potentially conservation priority areas in the Mediterranean region.  相似文献   

12.
Semi‐natural grasslands, among them thin‐soil calcareous grasslands (alvars), have great conservation value but have become increasingly rare in Europe. The main threat to alvar grasslands is the encroachment by juniper Juniperus communis and therefore it is usually removed during the restoration practice. Juniper can also be a host plant for many epiphytic lichens, but its role as a phorophyte is poorly known. We studied epiphytic lichen diversity on 126 junipers in 17 sites in western Estonia and found 140 lichenized taxa including several rare and red‐listed species. Using indirect and direct multivariate analyses (DCA, pCCA) and general linear models we revealed that both habitat and phorophyte properties affect lichen assemblies on juniper. Lichen species richness per site showed a unimodal relationship with compound factors of site productivity and juniper characteristics (stem circumference and juniper width). Lichen species richness per phorophyte was increasing with its size and with the proportion of dead branches, and was twice higher in plate alvars than in ryhk alvars. Also, the species composition in plate alvars differed from ryhk alvars by having 42 characteristic lichen species in plate alvars vs three indicators of ryhk alvars. The composition of lichens was significantly influenced by encroachment of alvars, e.g. by high juniper cover and shrub layer height, as well as by the proportion of dead branches and stem circumference of juniper. We conclude that the epiphytic lichen assemblies on junipers are threatened by grassland encroachment similarly to ground layer lichen assemblies. We suggest that some old and scencent junipers should be preserved during the restoration of alvar grasslands.  相似文献   

13.
To identify representative quantitative criteria for the creation of a future Red List of epiphytic lichens, 849 trees in 132 long-term ecological observation plots in the Swiss Central Plateau and the Pre-Alps were surveyed by standard sampling. Based on the trees, frequency data of the lichen taxa observed are described by the log series model, indicating the controlling effect of few ecological factors. Based on the plots, four classes of scarcity, each comprising 25% of the species, were established. As a contribution to the development of a national, representative survey of lichens, α-diversity (species richness, species density) andβ-diversity (dissimilarity) were calculated in terms of region, vegetation formation, vegetation belt and for their combinations. Differences in lichen diversity between the Central Plateau and the Pre-Alps were caused by the bigger elevational range in the Pre-Alps, which resulted in a higher species richness. α-Diversity of forest and non-forest were similar, whereas each vegetation formation showed one third of its species restricted to it. The contributions to the total lichen diversity of crustose, foliose and fruticose as well as of generative and vegetative species was calculated. Specific features along the altitudinal gradient of vegetation belts emerged: the percentage of crustose and generative lichens declined with every altitudinal step, increased in fruticose and vegetative lichens, and was the same in foliose species.  相似文献   

14.
The ecology of many tropical rain forest organisms, not the least in Africa, remains poorly understood. Here, we present a detailed ecological study of epiphytic lichens in the equatorial montane rain forest of Bwindi National Park (331 km2), Uganda. We evaluated all major lichen growth forms, including selected groups of crustose lichens. In 14 transects at elevations of 1290 m to 2500 m, we sampled 276 trees belonging to 60 species. We recorded all lichen species on each tree trunk between ground level and 2 m above the ground, yielding 191 lichen species in 67 genera, with a mean of 4.7 species per tree. We used non‐metric multi‐dimensional scaling to separate epiphytic lichen assemblages according to tree species composition and elevation. Structural equation modeling indicated that elevation influenced tree species composition and that tree species composition largely determined lichen species composition. Thus, elevation acted indirectly on the lichen assemblages. Further studies examining factors such as bark properties and lichen colonization ecology may clarify what determines the association between tree species and lichen assemblages. The link between lichen assemblages and large‐scale elevation patterns, as well as disturbance and regrowth histories, warrants further study. An analysis of lichen species composition on individual tree species that occur over large elevation ranges would distinguish the effect of tree species on lichen assemblages from the effect of elevation and thus climate. Our study highlights the limited extent of our knowledge of tropical epiphytic lichens.  相似文献   

15.
Excessive nitrogen (N) deposition can impact lichen diversity in forest ecosystems, and this is a particular situation in China. Here, we examined the N uptake, assimilation, and the impact of excessive N deposition on the symbiotic balance of dominant epiphytic lichens in the subtropical forests in the Mts. Shennongjia of central China. The results show that lichen species took up, assimilated and utilized more ammonium than nitrate in a species‐specific way, following the increase of N availability. The photobiont of the lichens decreased with the increase of N concentration following an initial increase, while the mycobiont response to the N addition was not apparent. Considerable variation in response to excessive N deposition exists among the lichen species. Usnea longissima could regulate its N uptake, resulting in a stable photobiont‐mycobiont ratio among N treatments. In contrast, the photobiont‐mycobiont ratio of other four lichens increased initially but decreased when N concentration exceeded a certain level, and N stress may have broken the balance between photobiont and mycobiont of these lichens. Our results suggest that most epiphytic lichens in subtropical forest of central China could uptake and assimilate more ammonium than nitrate and that the balance between photobiont and mycobiont of many epiphytic lichens might change with the increasing N deposition load, which could impact the lichen diversity of this forest ecosystem.  相似文献   

16.
Epiphytic lichen and bryophyte Floristic Richness (FR) and distribution were investigated in Lisbon and the adjacent southern riverbank, in the centre-west of Portugal within the Lisbon Metropolitan Area (LMA). Field studies were carried out in the years 2010–2011 to replicate research conducted 30 years ago in 1980–1981.Compared to previous surveys, we confirm that the overall environmental condition has largely improved, with higher epiphyte richness. The two areas have been recolonized during the last 30 years by sensitive species mainly due to changes in SO2 levels. However, the traffic-related NO2 and dust deposition have become the main pollutants and the increase of nitrophilous and saxicolous/terricolous taxa reflects this influence. But, besides air pollution, the important variable affecting the epiphytic flora of LMA, currently updated to more than 200 taxa, is the influence of arborisation system type, road type and road proximity of the new surveys, in addition to urbanization (calculated in an Index of Human Impact – IHI).According to their current epiphyte diversity, with Floristic Richness (RF) ranging from 4 to more than 90 taxa (lichens and bryophytes), five zones were identified in LMA and related with air quality.As a conclusion, significant changes in the Floristic Richness (FR) were observed over the past 30 years, not only the value but also the spatial pattern which differs greatly between the two areas, linked significantly with air quality and other human influences.Due to the few number of available air quality monitoring stations, in particularly for NO2 values, the important contributions of epiphytic flora in defining the distribution range and spatial patterns of urban disturbance imply that FR may be a practical and useful indicator of air quality in LMA.  相似文献   

17.
Shriver RK  Cutler K  Doak DF 《Oecologia》2012,170(1):137-146
Lichens are major components in many terrestrial ecosystems, yet their population ecology is at best only poorly understood. Few studies have fully quantified the life history or demographic patterns of any lichen, with particularly little attention to epiphytic species. We conducted a 6-year demographic study of Vulpicida pinastri, an epiphytic foliose lichen, in south-central Alaska. After testing multiple size-structured functions to describe patterns in each V. pinastri demographic rate, we used the resulting estimates to construct a stochastic demographic model for the species. This model development led us to propose solutions to two general problems in construction of demographic models for many taxa: how to simply but accurately characterize highly skewed growth rates, and how to estimate recruitment rates that are exceptionally difficult to directly observe. Our results show that V. pinastri has rapid and variable growth and, for small individuals, low and variable survival, but that these traits are coupled with considerable longevity (e.g., >50?years mean future life span for a 4-cm(2) thallus) and little deviation of the stochastic population growth rate from the deterministic expectation. Comparisons of the demographic patterns we found with those of other lichen studies suggest that their relatively simple architecture may allow clearer generalities about growth patterns for lichens than for other taxa, and that the expected pattern of faster growth rates for epiphytic species is substantiated.  相似文献   

18.
We characterize lichen flora of Slovakia based on the review of recent studies published since 1998, point at selected lichen taxa described for science from this territory and outline main geographical elements and other important groups. We annex critically revised and updated checklist of lichens of Slovakia, which includes 1,628 species. As a result of intensive field work the number of species increased by 142 new species since the last version of checklist published 15 years ago, 26 species were excluded.  相似文献   

19.
Nitrogen (N) deposition has increased globally over the last 150 years and further increases are predicted. Epiphytic lichens decline in abundance and diversity in areas with high N loads, and the abundance of lichens decreases along gradients of increased deposition. Thus, although N is an essential nutrient for lichens, excessive loads may be detrimental for them. However, these gradients include many correlated pollutants and the mechanisms behind the decline are thus poorly known. The aim of this study was to assess effects of N deposition, alone, on the epiphytic lichen community composition in a naturally N‐poor boreal forest. For this purpose, whole spruce trees were fertilized daily with N at five levels, equivalent to 0.6, 6, 12.5, 25, and 50 kg N ha?1 yr?1, during four consecutive growing seasons (2006–2009), and changes in the abundance of lichens were monitored each autumn from the preceding year (2005). The studied lichen communities were highly dynamic and responded strongly to the environmental perturbation. N deposition detectably altered the direction of succession and reduced the species richness of the epiphytic lichen communities, even at the lowest fertilization application (6 kg N ha?1 yr?1). The simulated N deposition caused significant changes in the abundance of Alectoria sarmentosa, Bryoria spp., and Hypogymnia physodes, which all increased at low N loads and decreased at high loads, but with species‐specific optima. The rapid decline of A. sarmentosa may have been caused by the added nitrogen reducing the stability of the lichen thalli, possibly due to increases in the photobiont: mycobiont ratio or parasitic fungal attacks. We conclude that increases in nitrogen availability, per se, could be responsible for the reductions in lichen abundance and diversity observed along deposition gradients, and those community responses may be due to physiological responses of the individual species rather than changes in competitive interactions.  相似文献   

20.
Relations between irradiance (I) and lichen growth were investigated for five macro‐lichens growing at two sites in Sweden. The lichens represented different mycobiont–photobiont associations, two morphologies (foliose, fruticose) and two life forms (epiphytic, terricolous). The lichens were transplanted at two geographically distant sites in Sweden (1000 km apart) from Sept 1995 to Sept 1996 in their typical microhabitats, where microclimate and growth were followed. Between April/May and Sept 96, the terricolous species had a dry matter gain of 0·2 to 0·4 g (g DW)–1 and the epiphytes 0·01 to 0·02 g (g DW)–1. When related to area, growth amounted to 30 to 70 g m?2 for the terricolous species and to 1 to 4 g m?2 for the epiphytes. There was a strong correlation between growth and intercepted irradiance when the lichens were wet (Iwet), with 0·2 to 1·1 g lichen dry matter being produced per MJ solar energy. Across the 10 sets of transplants, light use efficiencies of dry matter yield (e) ranged between 0·5 and 2%, using an energy equivalent of 17·5 kJ g?1 of lichen dry matter. The higher productivity of the terricolous species was due to longer periods with thallus water contents sufficient for metabolic activity and because of the higher mean photon flux densities of their microhabitat. A four‐fold difference in photosynthetic capacity among the species was also important. It is concluded that lichen dry matter gain was primarily related to net carbon gain during metabolically active periods, which was determined by light duration, photon flux density and photosynthetic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号