首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have pointed out biochemical and pharmacological phenomena associated with the mechanism or mechanisms of sleep, especially in its paradoxical phase (Jouvet, 1964; Mandel, 1964). Our previous experiments have shown that paradoxical sleep (PS) deprivation leads to the fall of total glycogen content in certain regions of the brains of cats (Mr?ulja, Raki? and Radulova?ki, 1967; Mr?ulja and Raki?, 1968) and rats (Karad?i? and Mr?ulja, 1969). It was shown that changes of glycogen content correspond to PS deprivation and that PS deprivation is a specific stress to which the CNS responds selectively. Alterations in the glycogen concentration in a number of different brain structures lead us to conclude that neural areas affected by PS deprivation are widely distributed. Jouvet (1962) was one of the first to suggest that a neurohumoral mechanism may be concerned in the control of and characteristics of sleep. Experiments have shown that both cholinergic and adrenergic mechanisms may be involved in the initiation, maintenance and control of sleep. It has also been pointed out that paradoxical sleep can be started and maintained by cholinergic drugs (Matsuzaki, Okada and Shuto, 1967, 1968), blocked or reduced by anticholinergic compounds (Matsuzaki et al., 1968), and stimulated by noradrenaline or by its precursor, DOPA (Matsumoto and Jouvet, 1964). Bowers, Hartmann and Freedman (1966) showed that the ACh level of the rat telencephalon decreases with PS deprivation while the levels of norpinephrine and serotonin remain the same (Barchas and Freedman, 1963). More recently, Pujol, Mouret, Jouvet and Glowinski (1968) found the increased turnover of cerebral norepinephrine during rebound of PS in the rat. It is also of interest to point out that probably both adrenergic and cholinergic processes participate in the glycogenolytic effect of physostigmine (Mr?ulja, Terzi? and Varagi?, 1968). It was suggested that physostigmine initiates the cholinergic processes which then trigger off adrenergic processes. The aim in the present work was to determine the glycogen content in certain brain regions of rats which were subjected to PS deprivation lasting 72 hr and treated with some cholinergic or beta-adrenergic blocking agents, as well as with a catecholamine depleting drug.  相似文献   

2.
Since long ago, one of the most vital issues mankind is concerned about is why spending almost one-third of human lives for sleep. This review addresses the major function of slow-wave sleep (SWS) and molecular mechanisms of its regulation. The main conclusions are presented below as the following generalizations and hypotheses. 1. SWS performs an energy-conserving function which developed parallel to the evolution of tachimetabolism and endothermy/homoiothermy. 2. Most significant reduction in the brain energy demands during deep SWS, characterized by increased EEG delta power, creates optimal conditions for the enhancement of anabolic processes and actualization of the major biological function of sleep—accelerating protein synthesis in the brain. 3. Conditions of paradoxical sleep (PS) as an “archeowakefulness”, containing the elements of endogenous stress, seem acceptable for chaperone expression required to fix misfolded proteins synthesized de novo during deep SWS. 4. Close integration of the HSP70 and HSP40 molecular systems, contained in the sleep center of the preoptic area of the hypothalamus, and their compensatory interrelationship contribute significantly to the maintenance of sleep homeostasis and implementation of its functions under non-stress conditions and during a long-term chaperone deficiency intrinsic to ageing and varied neuropathologies. 5. Cyclic changes in the protein synthesis rate (during deep SWS) and HSP70 chaperone expression (during wakefulness and, probably, PS), which occur on a daily basis throughout the entire lifetime, are critical for all vital functions of homeothermic organisms, including recovery of the nervous system structure and functions.  相似文献   

3.
The phenomenon of paradoxical sleep (PS) self-deprivation has been detected and described. The self-deprivation is acquired just as a classical conditioned reflex during enforced PS deprivation both by water tank procedure and by the animal's awakenings in response to sensory stimuli or direct electric stimulation of activating structures of the midbrain and diencephalon, following the transition of slow-wave sleep to PS. In this situation the transition of the brain from one physiological state to another is a conditioned signal, and sensory stimulation or brain stimulation, resulting in arousal reaction, serves as an unconditioned stimulus. It is suggested that the detection and analysis of PS self-deprivation are of a great importance, on the one hand, for correct understanding of the functional significance of this physiological brain state, and, on the other hand, for accurate analysis and assessment of the dissociative processes, observed during PS deprivation and postdeprivation period.  相似文献   

4.
In the Jouvet's laboratory, as early as 1960 the study of the ontogenesis of paradoxical sleep (PS) named "sleep 'with jerks" began in the kitten and led to the first publication in 1961. Then, several species were studied, lamb, rat, human neonates, etc. These works showed that at birth sleep with jerks was preponderant in altricial (immature) species (cat, rat) and the first to appear during the second half of gestation in precocious species (guinea pig). For Jouvet, sleep with jerks is a immature form of PS. Why PS is so important at birth? The maturation of the central nervous system, based on the myelinization, starts in the spinal cord then forwards to the brainstem and forebrain. So, PS mechanisms located in the brainstem are the first to mature and the only one to function. Then the slow wave sleep (SWS) and waking structures become mature. Phylogenetic studies showed that in mammals and birds PS was present even in marsupials and monotremes. Until now only the one exception is the dolphin with a voluntary breathing. To sleep and breath, dolphin has developed an unilateral sleep without classical PS. In other animals, reptiles, amphibians, fishes, PS was not observed with the parameters used in mammals. The study at birth (not yet done) of reptiles would allow perhaps the observation of a temporary PS. Based on these findings, a schematic model of the sleep regulation can be elaborated. Haeckel's aphorism "Ontogeny recapitulates phylogeny" seems true for PS which appears in birds and mammals i.e. at the end of evolution as it appears at the end of gestation when PS cerebral structures are present and mature.  相似文献   

5.
Young adult Louis rats were implanted for chronic sleep recording to test the effect of diethyldithiocarbamate (DDC) on sleep. Recordings of EEG and EMG were done continuously for 12 h during the 12 consecutive days. There were 2 days of baseline recording, 3 days of recording with a single daily injection of placebo, 3 days of recording with a single daily injection of DDC (500 mg/kg i.p.), and 3 days of DDC withdrawal recording with placebo injection. Placebo injections did not change the proportion of time spent in different behavioural states. With daily injection of DDC there was an increase in wakefulness, no change in slow-wave sleep and elimination or drastic reduction in paradoxical sleep (PS). There was no PS rebound during the DDC withdrawal days. These results suggest that the reduction of PS produced by DDC and the absence of PS rebound may be due to a lowering in norepinephrine in the brain. In other experiments rats were injected with DDC (500 mg/kg i.p.) daily for 3 days and whole brains were analysed chemically. Norepinephrine was significantly decreased, while 5-hydroxytryptamine, 5-hydroxyindolacetic acid, dopamine and homovanilic acid were unchanged. Seizure activity appeared during relaxed wakefulness in all rats treated with DDC. Taken together it seems that lowering of brain NE is responsible for the appearance of seizure activity and also, for PS reduction. PS reduction might, per se, produce seizure activity.  相似文献   

6.
We have found that single neuronal activities in different regions in the brain commonly exhibit the distinct dynamics transition during sleep-waking cycle in cats. Especially, power spectral densities of single neuronal activities change their profiles from the white to the 1/f along with sleep cycle from slow wave sleep (SWS) to paradoxical sleep (PS). Each region has different neural network structure and physiological function. This suggests a globally working mechanism may be underlying the dynamics transition we concern. Pharmacological studies have shown that a change in a wide-spread serotonergic input to these regions possibly causes the neuronal dynamics transition during sleep cycle. In this paper, based on these experimental results, an asynchronous and symmetry neural network model including inhibitory input, which represents the role of the serotonergic system, is utilized to examine the reality of our idea that the inhibitory input level varying during sleep cycle induce that transition. Simulation results show that the globally applied inhibitory input can control the dynamics of single neuronal state evolution in the artificial neural network: 1/f-like power spectral density profiles result under weak inhibition, which possibly corresponds to PS, and white profiles under strong inhibition, which possibly corresponds to SWS. An asynchronous neural network is known to change its state according to its energy function. The geometrical structure of network energy function is thought to vary along with the change in inhibitory level, which is expected to cause the dynamics transition of neuronal state evolution in the network model. These simulation results support the possibility that the serotonergic system is essential for the dynamics transition of single neuronal activities during sleep cycle.  相似文献   

7.
The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH) in neurons from the tuberal hypothalamic area (THA) which are recruited during sleep states, especially paradoxical sleep (PS). To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2) prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS). Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.  相似文献   

8.
Variations of brain tissue redox state potential (E) of freely-moving white rats (300-350 g) in cycles of wakefulness (W), slow-wave sleep (SWS), and paradoxical sleep (PS) were measured by platinum electrodes symmetrically implanted into the frontal and occipital cortices and hippocampus. In addition, EMG of neck muscles and general motor activity of animals were recorded. The common reference electrode was implanted in the nasal bone. It was shown that in some brain sites (called active), episodes of W and PS were accompanied by a rise of E, and during transitions from W and PS to SWS, E dropped. The value of E varied in the range of 100 mV. It is suggested that transitions from W and PS to SWS are accompanied by shifts in the balance between the main energy sources. Oxidative phosphorylation prevails in W and PS, whereas aerobic glycolysis is the main source of energy during SWS. We think that this suggestion is supported both by a decrease in E in SWS and its oscillations typical of glucolytic processes [Aon et al., 1992]. Recent literature data [Bitter et al., 1996] suggest that astroglia is the main compartment for aerobic glycolysis.  相似文献   

9.
Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS-/- cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD.  相似文献   

10.
Many species of typically diurnal songbirds experience sleep loss during the migratory seasons owing to their nocturnal migrations. However, despite substantial loss of sleep, nocturnally migrating songbirds continue to function normally with no observable effect on their behaviour. It is unclear if and how avian migrants compensate for sleep loss. Recent behavioural evidence suggests that some species may compensate for lost night-time sleep with short, uni- and bilateral 'micro-naps' during the day. We provide electrophysiological evidence that short episodes of sleep-like daytime behaviour (approx. 12s) are accompanied by sleep-like changes in brain activity in an avian migrant. Furthermore, we present evidence that part of this physiological brain response manifests itself as unihemispheric sleep, a state during which one brain hemisphere is asleep while the other hemisphere remains essentially awake. Episodes of daytime sleep may represent a potent adaptation to the challenges of avian migration and offer a plausible explanation for the resilience to sleep loss in nocturnal migrants.  相似文献   

11.
Why we sleep remains one of the enduring unanswered questions in biology. At its core, sleep can be defined behaviorally as a homeostatically regulated state of reduced movement and sensory responsiveness. The cornerstone of sleep studies in terrestrial mammals, including humans, has been the measurement of coordinated changes in brain activity during sleep measured using the electroencephalogram (EEG). Yet among a diverse set of animals, these EEG sleep traits can vary widely and, in some cases, are absent, raising questions as to whether they define a universal, or even essential, feature of sleep. Over the past decade, behaviorally defined sleep-like states have been identified in a series of genetic model organisms, including fish, flies and worms. Genetic analyses in these systems are revealing a remarkable conservation in the underlying mechanisms controlling sleep behavior. Taken together, these studies suggest an ancient origin for sleep and raise the possibility that model organism genetics may reveal the molecular mechanisms that guide sleep and wake.  相似文献   

12.
In the middle of the last century, Michel Jouvet discovered paradoxical sleep (PS), a sleep phase paradoxically characterized by cortical activation and rapid eye movements and a muscle atonia. Soon after, he showed that it was still present in "pontine cats" in which all structures rostral to the brainstem have been removed. Later on, it was demonstrated that the pontine peri-locus coeruleus alpha (peri-LCalpha in cats, corresponding to the sublaterodorsal nucleus, SLD, in rats) is responsible for PS onset. It was then proposed that the onset and maintenance of PS is due to a reciprocal inhibitory interaction between neurons presumably cholinergic specifically active during PS localized in this region and monoaminergic neurons. In the last decade, we have tested this hypothesis with our model of head-restrained rats and functional neuroanatomical studies. Our results confirmed that the SLD in rats contains the neurons responsible for the onset and maintenance of PS. They further indicate that (1) these neurons are non-cholinergic possibly glutamatergic neurons, (2) they directly project to the glycinergic premotoneurons localized in the medullary ventral gigantocellular reticular nucleus (GiV), (3) the main neurotransmitter responsible for their inhibition during waking (W) and slow wave sleep (SWS) is GABA rather than monoamines, (4) they are constantly and tonically excited by glutamate and (5) the GABAergic neurons responsible for their tonic inhibition during W and SWS are localized in the deep mesencephalic reticular nucleus (DPMe). We also showed that the tonic inhibition of locus coeruleus (LC) noradrenergic and dorsal raphe (DRN) serotonergic neurons during sleep is due to a tonic GABAergic inhibition by neurons localized in the dorsal paragigantocellular reticular nucleus (DPGi) and the ventrolateral periaqueductal gray (vlPAG). We propose that these GABAergic neurons also inhibit the GABAergic neurons of the DPMe at the onset and during PS and are therefore responsible for the onset and maintenance of PS.  相似文献   

13.
Sensory gating is a process in which the brain’s response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject’s behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP) can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM) sleep and Non-REM (NREM) sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.  相似文献   

14.
In the middle of the last century, Michel Jouvet discovered paradoxical sleep (PS), a sleep phase paradoxically characterized by cortical activation and rapid eye movements and a muscle atonia. Soon after, he showed that it was still present in “pontine cats” in which all structures rostral to the brainstem have been removed. Later on, it was demonstrated that the pontine peri-locus coeruleus α (peri-LCα in cats, corresponding to the sublaterodorsal nucleus, SLD, in rats) is responsible for PS onset. It was then proposed that the onset and maintenance of PS is due to a reciprocal inhibitory interaction between neurons presumably cholinergic specifically active during PS localized in this region and monoaminergic neurons. In the last decade, we have tested this hypothesis with our model of head-restrained rats and functional neuroanatomical studies. Our results confirmed that the SLD in rats contains the neurons responsible for the onset and maintenance of PS. They further indicate that (1) these neurons are non-cholinergic possibly glutamatergic neurons, (2) they directly project to the glycinergic premotoneurons localized in the medullary ventral gigantocellular reticular nucleus (GiV), (3) the main neurotransmitter responsible for their inhibition during waking (W) and slow wave sleep (SWS) is GABA rather than monoamines, (4) they are constantly and tonically excited by glutamate and (5) the GABAergic neurons responsible for their tonic inhibition during W and SWS are localized in the deep mesencephalic reticular nucleus (DPMe). We also showed that the tonic inhibition of locus coeruleus (LC) noradrenergic and dorsal raphe (DRN) serotonergic neurons during sleep is due to a tonic GABAergic inhibition by neurons localized in the dorsal paragigantocellular reticular nucleus (DPGi) and the ventrolateral periaqueductal gray (vlPAG). We propose that these GABAergic neurons also inhibit the GABAergic neurons of the DPMe at the onset and during PS and are therefore responsible for the onset and maintenance of PS.  相似文献   

15.
The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.  相似文献   

16.
To examine the relationship between the sleep rhythm and the gonadal feedback system in the guinea pig, the effects of estrous cycle, gonadal steroids and brain deafferentiations on the sleep rhythm were studied and the following results were obtained; 1) the guinea pigs did not show an apparent circadian rhythmicity in the sleep-wakefulness cycle but showed an ultradian rhythm, whereas, the activity rhythm was circadian, 2) the rhythm in paradoxical sleep(PS) showed changes associated with the estrous cycle which were characterized by a decrease and rebound-like increase in PS amounts on the day of proestrus, 3) the horizontal deafferentation above the medial preoptic area at the level of the anterior commissure (MPO roof cut) did not disrupt the estrous cycle dependent changes in the PS rhythm, but the prechiasmatic deafferentiation of the medial basal hypothalamus (PCD) and the large complete deafferentation of the medial basal hypothalamus (CDL) disrupted them, 4) ovariectomy (OVX) did not result in any changes in sleep and activity rhythms, 5) an administration of estradiol benzoate (E2) to OVX guinea pig caused a decrease in the amount of PS and an administration of progesterone (P) 48h after E2 caused a more pronounced decrease and rebound-like increase in the amount of PS, 6) the MPO roof cut did not affect the steroidal modification of the PS rhythm and the PCD disrupted it, while the CDL-animal also showed a E2-induced PS decrease. From these results, it appears that the guinea pig may be a circadian animal, but this may not be seen in the sleep-wakefulness cycle, and the estrous cycle dependent changes in the PS rhythm may be the reflection of steroidal modification of the sleep rhythm and the site of action may be the inside of the medial preoptic anterior hypothalamic structures, but this area may also be affected by the output from the medial basal hypothalamus.  相似文献   

17.
The functions of sleep are still unknown, but are probably related to cellular and molecular aspects of neural function. To better understand the benefits that sleep may bring at the cellular level, recent studies have employed Drosophila melanogaster as a model system and shown that fruit flies share the fundamental features of mammalian sleep. As in mammals, sleep in Drosophila is characterized by increased arousal threshold and by changes in brain electrical activity. Fly sleep is homeostatically regulated independent of the circadian clock, is modulated by stimulants and hypnotics, and is affected by age. Also, fly sleep is associated with changes in brain gene expression similar to those observed in mammals. While Drosophila neurobiology is sufficiently complex to permit meaningful generalizations to mammals and humans, Drosophila genetics is simple enough to allow a rapid mutagenesis screening. An ongoing mutagenesis study has screened approximately 5000 mutant Drosophila lines and found that sleep amount, sleep pattern, and the homeostatic regulation of sleep are highly conserved phenotypes in flies. So far, this study has identified 10 short sleeper lines and 4 lines that show no sleep rebound after sleep deprivation. Ultimately, the characterization of these lines should help identifying crucial cellular pathways involved in the regulatory mechanisms of sleep and its functional consequences.  相似文献   

18.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.  相似文献   

19.
Melanin-concentrating hormone (MCH), a neuropeptide secreted by a limited number of neurons within the tuberal hypothalamus, has been drawn in the field of sleep only fairly recently in 2003. Since then, growing experimental evidence indicates that MCH may play a crucial role in the homeostatic regulation of paradoxical sleep (PS). MCH-expressing neurons fire specifically during PS. When injected icv MCH induces a 200% increase in PS quantities in rats and the lack of MCH induces a decrease in sleep quantities in transgenic mice. Here, we review recent studies suggesting a role for MCH in the regulation of the sleep–wake cycle, in particular PS, including insights on (1) the specific activity of MCH neurons during PS; (2) how they might be controlled across the sleep–wake cycle; (3) how they might modulate PS; (4) and finally whether MCH might take part in the expression of some symptoms observed in primary sleep disorders.  相似文献   

20.
Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号