首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The minimal RNA synthesis machinery of non-segmented negative-strand RNA viruses comprises a genomic RNA encased within a nucleocapsid protein (N-RNA), and associated with the RNA-dependent RNA polymerase (RdRP). The RdRP is contained within a viral large (L) protein, which associates with N-RNA through a phosphoprotein (P). Here, we define that vesicular stomatitis virus L initiates synthesis via a de-novo mechanism that does not require N or P, but depends on a high concentration of the first two nucleotides and specific template requirements. Purified L copies a template devoid of N, and P stimulates L initiation and processivity. Full processivity of the polymerase requires the template-associated N protein. This work provides new mechanistic insights into the workings of a minimal RNA synthesis machine shared by a broad group of important human, animal and plant pathogens, and defines a mechanism by which specific inhibitors of RNA synthesis function.  相似文献   

3.
4.
5.
6.
7.
8.
The RNA products synthesized in vitro by the virion-associated RNA polymerase of purified vesicular stomatitis virus have previously been shown to contain two distinct 5′-terminal sequences. The mRNA species contain the blocked 5′-terminal G(5′)ppp(5′)A-A-C-A-G sequence and the initiated lead-in RNA segment (approximately 50 bases) contains the unblocked 5′ ppA-C-G sequence. In the present studies, using inosine 5′-triphosphate in place of GTP it is shown that RNA species as large as 14.5S contain an unblocked 5′-ppA-C-(I) sequence indicating that the GTP analogue permits synthesis of a possible precursor of viral mRNA in vitro.  相似文献   

9.
10.
11.
12.
13.
14.
Three defective interfering (DI) particles of vesicular stomatitis virus (VSV), all derived from the same parental standard San Juan strain (Indiana serotype), were used in various combinations to infect cells together with the parental virus. The replication of their RNA genomes in the presence of other competing genomes was described by the hierarchical sequence: DI 0.52 particles greater than DI 0.45 particles less than or equal to DI-T particles greater than standard VSV. The advantage of one DI particle over another was not due simply to multiplicity effects nor to the irreversible occupation of limited cellular sites. Interference, however, did correlate with a change in the ratio of plus and minus RNA templates that accumulated intracellularly and with the presence of new sequences at the 3' end of the DI genomes. DI 0.52 particles contained significantly more nucleotides at the 3' end that were complementary to those at the 5' end of its RNA than did DI-T or DI 0.45 particles. The first 45 nucleotides at the 3' ends of all of the DI RNAs were identical. VSV and its DI particles can be separated into three classes, depending on their terminal RNA sequences. These sequences suggest two mechanisms, one based on the affinity of polymerase binding and the other on the affinity of N-protein binding, that may account for interference by DI particles against standard VSV and among DI particles themselves.  相似文献   

15.
16.
Over 20% of the cytosine bases in frog virus 3 DNA are methylated at the 5-carbon position. To determine whether this high degree of methylation is the result of a virus-specific enzyme, we examined the kinetics of induction and the substrate specificity of a DNA methyltransferase from frog virus 3-infected fathead minnow cells. A novel DNA methyltransferase activity appeared in the cytoplasm of infected cells at 3 h postinfection. This activity was induced in the absence of viral DNA replication and was therefore probably an early viral enzyme. In contrast to the methyltransferase activity extracted from uninfected cell nuclei, the cytoplasmic enzyme showed a strong template preference for double-stranded over single-stranded and for unmethylated over hemimethylated DNA. The dinucleotide sequence dCpdG was a necessary and sufficient exogenous substrate for methylation in vitro. A mutant of frog virus 3, isolated as resistant to 5-azacytidine and having unmethylated virion DNA, did not induce cytoplasmic DNA methyltransferase, leading to the conclusion that this activity is coded for by the virus.  相似文献   

17.
18.
Vesicular stomatitis virus (VSV) leader RNA and a synthetic oligodeoxynucleotide of the same sequence were found to inhibit the replication of adenovirus DNA in vitro. In contrast, the small RNA transcribed by the VSV defective interfering particle DI-011 did not prevent adenovirus DNA replication. The inhibition produced by leader RNA was at the level of preterminal protein (pTP)-dCMP complex formation, the initiation step of adenovirus DNA replication. Initiation requires the adenovirus pTP-adenovirus DNA polymerase complex (pTP-Adpol), the adenovirus DNA-binding protein, and nuclear factor I. Specific replication in the presence of leader RNA was restored when the concentration of adenovirus-infected or uninfected nuclear extract was increased or by the addition of purified pTP-Adpol or HeLa cell DNA polymerase alpha-primase to inhibited replication reactions. Furthermore, the activities of both purified DNA polymerases could be inhibited by the leader sequence. These results suggest that VSV leader RNA is the viral agent responsible for inhibition of adenovirus and possibly cellular DNA replication during VSV infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号