首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 are lipoproteins, and to assess cell surface exposure of the cytochromes by radioiodination. METHODS AND RESULTS: In anaerobic MR-1 cells grown with (3)H-palmitoleic acid, both OmcA and OmcB were radiolabelled. The identities of these bands were confirmed by the absence of each radiolabelled band in the respective mutants lacking individual OM cytochromes. Radioiodination of cell surface proteins in anaerobic cells resulted in (125)I-labelled OmcA. The identity of this band was confirmed by its absence in an OmcA-minus mutant. A ubiquitous radioiodinated band that migrates similarly to OmcB precluded the ability to determine the potential cell surface exposure of OmcB by this method. CONCLUSIONS: Both OmcA and OmcB are lipoproteins, and OmcA is cell surface exposed. SIGNIFICANCE: The lipoprotein modification of these OM cytochromes could be important for their localization or incorporation into the OM. The cell surface exposure of OmcA could allow it to directly transfer electrons to extracellular electron acceptors (e.g. manganese oxides) and is consistent with its in vivo role.  相似文献   

2.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 have distinct or overlapping roles in the reduction of insoluble manganese(IV) oxide. METHODS AND RESULTS: The gene replacement mutant (OMCA1) which lacks OmcA was partially deficient in Mn(IV) reduction. Complementation of OMCA1 with a vector (pVK21) that contains omcB but not omcA restored Mn(IV) reduction to levels that were even greater than those of wild-type. Examination of the OM of OMCA1/pVK21 revealed greater than wild-type levels of OmcB protein and specific haem content. CONCLUSIONS: Overexpression of OmcB can compensate for the absence of OmcA in the reduction of insoluble Mn(IV) oxides. Therefore, there is at least a partial overlap in the roles of these OM cytochromes in the reduction of insoluble Mn(IV) oxide. SIGNIFICANCE: The overlapping roles of these two cytochromes has important implications for understanding the mechanism by which MR-1 reduces insoluble metal oxides. There is no obligatory sequential electron transfer from one cytochrome to the other. They could both potentially serve as terminal reductases for extracellular electron acceptors.  相似文献   

3.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

4.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

5.
6.
The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.  相似文献   

7.
The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.  相似文献   

8.
The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species.  相似文献   

9.
The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species.  相似文献   

10.
The Gram-negative bacterium Shewanella oneidensis MR-1 shows a remarkably versatile anaerobic respiratory metabolism. One of its hallmarks is its ability to grow and survive through the reduction of metallic compounds. Among other proteins, outer membrane decaheme cytochromes c OmcA and OmcB have been identified as key players in metal reduction. In fact, both of these cytochromes have been proposed to be terminal Fe(III) and Mn(IV) reductases, although their role in the reduction of other metals is less well understood. To obtain more insight into this, we constructed and analyzed omcA, omcB and omcA/omcB insertion mutants of S. oneidensis MR-1. Anaerobic growth on Fe(III), V(V), Se(VI) and U(VI) revealed a requirement for both OmcA and OmcB in Fe(III) reduction, a redundant function in V(V) reduction, and no apparent involvement in Se(VI) and U(VI) reduction. Growth of the omcB(-) mutant on Fe(III) was more affected than growth of the omcA(-) mutant, suggesting OmcB to be the principal Fe(III) reductase. This result was corroborated through the examination of whole cell kinetics of OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction, showing that OmcB is approximately 11.5 and approximately 6.3 times faster than OmcA at saturating and low nonsaturating concentrations of Fe(III)-nitrilotriacetic acid, respectively, whereas the omcA(-) omcB(-) double mutant was devoid of Fe(III)-nitrilotriacetic acid reduction activity. These experiments reveal, for the first time, that OmcA and OmcB are the sole terminal Fe(III) reductases present in S. oneidensis MR-1. Kinetic inhibition experiments further revealed vanadate (V(2)O(5)) to be a competitive and mixed-type inhibitor of OmcA and OmcB, respectively, showing similar affinities relative to Fe(III)-nitrilotriacetic acid. Neither sodium selenate nor uranyl acetate were found to inhibit OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction. Taken together with our growth experiments, this suggests that proteins other than OmcA and OmcB play key roles in anaerobic Se(VI) and U(VI) respiration.  相似文献   

11.
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.  相似文献   

12.
In an effort to improve the understanding of electron transfer mechanisms at the microbe–mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer-membrane cytochromes (OMCs), MtrC and OmcA, were characterized for the ability to reduce ferrihydrite (FH) using a suite of microscopic, spectroscopic, and biochemical techniques. Analysis of purified recombinant proteins demonstrated that both cytochromes undergo rapid electron exchange with FH in vitro with MtrC displaying faster transfer rates than OmcA. Immunomicroscopy with cytochrome-specific antibodies revealed that MtrC co-localizes with iron solids on the cell surface while OmcA exhibits a more diffuse distribution over the cell surface. After 3-day incubation of MR-1 with FH, pronounced reductive transformation mineral products were visible by electron microscopy. Upon further incubation, the predominant phases identified were ferrous phosphates including vivianite [Fe3(PO4)2·8H2O] and a switzerite-like phase [Mn3,Fe3(PO4)2·7H2O] that were heavily colonized by MR-1 cells with surface-exposed outer-membrane cytochromes. In the absence of both MtrC and OmcA, the cells ability to reduce FH was significantly hindered and no mineral transformation products were detected. Collectively, these results highlight the importance of the outer-membrane cytochromes in the reductive transformation of FH and support a role for direct electron transfer from the OMCs at the cell surface to the mineral.  相似文献   

13.
The c-type cytochrome (OmcB) and the multicopper protein (OmpB) required for Fe(III) oxide reduction by Geobacter sulfurreducens were predicted previously to be outer membrane proteins, but it is not clear whether they are positioned in a manner that permits the interaction with Fe(III). Treatment of whole cells with proteinase K inhibited Fe(III) reduction, but had no impact on the inner membrane-associated fumarate reduction. OmcB was digested by protease, resulting in a smaller peptide. However, immunogold labeling coupled with transmission electron microscopy did not detect OmcB, suggesting that it is only partially exposed on the cell surface. In contrast, OmpB was completely digested with protease. OmpB was loosely associated with the cell surface as a substantial portion of it was recovered in the culture supernatant. Immunogold labeling demonstrated that OmpB associated with the cell was evenly distributed on the cell surface rather than localized to one side of the cell like the conductive pili. Although several proteins required for Fe(III) oxide reduction are shown to be exposed on the outer surface of G. sulfurreducens, the finding that OmcB is also surface exposed is the first report of a protein required for optimal Fe(III) citrate reduction at least partially accessible on the cell surface.  相似文献   

14.
The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to and transfer electrons to hematite has led to the suggestion that they function as terminal reductases when this mineral is used as a respiratory substrate. Differences in their redox behavior and hematite-binding properties, however, indicate that they play different roles in the electron transfer reaction. Here, we investigated how these differences in cytochrome behavior with respect to hematite affected biofilm development when the mineral served as terminal electron acceptor (TEA). Upon attachment to hematite, cells of the wild-type (WT) strain as well as those of a ΔomcA mutant but not those of a ΔmtrC mutant replicated and accumulated on the mineral surface. The results indicate that MtrC but not OmcA is required for growth when this mineral serves as TEA. While an OmcA deficiency did not impede cell replication and accumulation on hematite prior to achievement of a maximum surface cell density comparable to that established by WT cells, OmcA was required for efficient electron transfer and cell attachment to hematite once maximum surface cell density was achieved. OmcA may therefore play a role in overcoming barriers to electron transfer and cell attachment to hematite imposed by reductive dissolution of the mineral surface from cell respiration associated with achievement of high surface cell densities.  相似文献   

15.
To characterize the roles of cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 in Cr(VI) reduction, the effects of deleting the mtrC and/or omcA gene on Cr(VI) reduction and the cellular locations of reduced Cr(III) precipitates were investigated. Compared to the rate of reduction of Cr(VI) by the wild type (wt), the deletion of mtrC decreased the initial rate of Cr(VI) reduction by 43.5%, while the deletion of omcA or both mtrC and omcA lowered the rate by 53.4% and 68.9%, respectively. In wt cells, Cr(III) precipitates were detected by transmission electron microscopy in the extracellular matrix between the cells, in association with the outer membrane, and inside the cytoplasm. No extracellular matrix-associated Cr(III) precipitates, however, were found in the cytochrome mutant cell suspension. In mutant cells without either MtrC or OmcA, most Cr(III) precipitates were found in association with the outer membrane, while in mutant cells lacking both MtrC and OmcA, most Cr(III) precipitates were found inside the cytoplasm. Cr(III) precipitates were also detected by scanning election microscopy on the surfaces of the wt and mutants without MtrC or OmcA but not on the mutant cells lacking both MtrC and OmcA, demonstrating that the deletion of mtrC and omcA diminishes the extracellular formation of Cr(III) precipitates. Furthermore, purified MtrC and OmcA reduced Cr(VI) with apparent k(cat) values of 1.2 ± 0.2 (mean ± standard deviation) and 10.2 ± 1 s(-1) and K(m) values of 34.1 ± 4.5 and 41.3 ± 7.9 μM, respectively. Together, these results consistently demonstrate that MtrC and OmcA are the terminal reductases used by S. oneidensis MR-1 for extracellular Cr(VI) reduction where OmcA is a predominant Cr(VI) reductase.  相似文献   

16.
Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracellular UO(2) nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO(2) nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO(2)-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO(2) nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO(2) nanoparticles. In the environment, such association of UO(2) nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O(2) or transport in soils and sediments.  相似文献   

17.
Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe(2)O(3)) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 microm) expresses approximately 10(4) cytochromes on its outer surface.  相似文献   

18.
A 40-kDa lipoprotein (Plp-40) is expressed by serotype A strains of Pasteurella multocida in amounts which correlate with the amount of capsular material present. We hypothesized that Plp-40 is exposed at the outer surface of the outer membrane (OM) of the cell and is associated with the serotype A exopolysaccharide material. The objectives of the present study were to confirm the lipoprotein nature of Plp-40 and to determine its subcellular location. Plp-40 maturation was shown to be sensitive to globomycin, thereby confirming it to be a bacterial lipoprotein. Plp-40 was shown to be present in the OM fractions of P. multocida obtained by both sarkosyl extraction and sucrose density gradient centrifugation, as well as in capsule fractions obtained by either hyaluronidase treatment or warm buffer extraction. [(3)H]palmitic acid-labeled Plp-40 could be removed from the surface of whole cells by exposure to proteinase K. Autoradiography of (125)I-labeled cell surface proteins exhibited a 40-kDa band that was prominent in capsulated strains and greatly diminished in a noncapsulated strain. These results support the hypothesis that Plp-40 is a lipid-modified OM protein, which is exposed on the outer cell surface and is likely associated with serotype A extracellular polysaccharide.  相似文献   

19.
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of these proteins are heme proteins, OmcA (83 kDa), MtrC (75 kDa), MtrA (32 kDa), CctA (19 kDa), and CymA (21 kDa), and can be visualized after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by heme staining. We show for the first time that MtrC, MtrA, and MtrB form a 198-kDa complex with a 1:1:1 stoichiometry. These proteins copurify through anion-exchange chromatography, and the purified complex has the ability to reduce multiple forms of Fe(III) and Mn(IV). Additionally, MtrA fractionates with the OM through sucrose density gradient ultracentrifugation, and MtrA comigrates with MtrB in native gels. Protein cross-linking of whole cells with 1% formaldehyde show new heme bands of 160, 151, 136, and 59 kDa. Using antibodies to detect each protein separately, heme proteins OmcA and MtrC were shown to cross-link, yielding the 160-kDa band. Consistent with copurification results, MtrB cross-links with MtrA, forming high-molecular-mass bands of approximately 151 and 136 kDa.  相似文献   

20.
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of these proteins are heme proteins, OmcA (83 kDa), MtrC (75 kDa), MtrA (32 kDa), CctA (19 kDa), and CymA (21 kDa), and can be visualized after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by heme staining. We show for the first time that MtrC, MtrA, and MtrB form a 198-kDa complex with a 1:1:1 stoichiometry. These proteins copurify through anion-exchange chromatography, and the purified complex has the ability to reduce multiple forms of Fe(III) and Mn(IV). Additionally, MtrA fractionates with the OM through sucrose density gradient ultracentrifugation, and MtrA comigrates with MtrB in native gels. Protein cross-linking of whole cells with 1% formaldehyde show new heme bands of 160, 151, 136, and 59 kDa. Using antibodies to detect each protein separately, heme proteins OmcA and MtrC were shown to cross-link, yielding the 160-kDa band. Consistent with copurification results, MtrB cross-links with MtrA, forming high-molecular-mass bands of approximately 151 and 136 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号