首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental changes in the tracheal mucociliary system in neonatal sheep   总被引:1,自引:0,他引:1  
We studied the postnatal development of the tracheal epithelium and mucociliary system in neonatal sheep. Secretion of macromolecules (radiolabeled with 35SO4 and [3H]-threonine), unidirectional fluxes of Cl-, Na+, and water (measured with radioactive tracers), and ciliary beat frequency (CBF) were measured in tracheal tissues in vitro. Tracheal mucus transport velocity (TMV) was measured in vivo. Sheep were studied at 0, 2, 4, 8, and greater than 24 (adult) wk after birth. In newborn sheep trachea, secretion of macromolecules was significantly elevated (cf. adults), and there was basal net secretion of Cl- under short-circuit and open-circuit conditions. This induced open-circuit secretion of Na+. Secretion of macromolecules decreased rapidly by 2 wk (by 40-50%) and was not different from adult values by 4 wk. Active Na+ absorption developed rapidly, and from 2 wk onward it predominated under open-circuit conditions, inducing net Cl- absorption. These changes in secretory function were associated with an age-related increase in TMV, whereas inherent tracheal CBF was unchanged. In sheep, therefore, the newborn's trachea has elevated secretion of macromolecules and secretes Cl- and liquid under basal conditions. Normal secretory function (a reduction in secretion of macromolecules coupled with net absorption of ions and presumably of liquid also) approaches adult function by 2-4 wk of age.  相似文献   

2.
We studied the effects of in vitro challenge with specific antigen (Ascaris suum antigen) on glycoprotein secretion and ion fluxes in tracheal tissues from allergic sheep. We mounted tissues in Perspex chambers and measured secretion of 35S- and 3H-labeled glycoproteins and fluxes of Cl- and Na+. In tissues from allergic sheep, A. suum antigen (25 micrograms protein X ml-1) increased glycoprotein secretion. A. suum antigen initially reversed net Cl- flux, causing net absorption of Cl- and of Na+. This was followed 15-30 min later by net secretion of Cl- and of Na+. Pretreatment of tissues with cromolyn (10(-4) M) greatly reduced the effects of A. suum antigen but did not abolish them. The cromolyn-resistant effects were nonspecific, because they were similar to those of in vitro challenges with nonspecific proteins, ovalbumin and ragweed in allergic sheep, and A. suum antigen in nonallergic sheep. We conclude that challenge with A. suum antigen results in mucus hypersecretion in airways of allergic sheep, by both specific and smaller nonspecific effects. Specific effects (cromolyn sensitive) are produced by mediators which are released from airway cells in response to A. suum challenge.  相似文献   

3.
We studied the effects of ozone (O3) exposure on airway mucus secretion. Sheep were exposed in vivo to 0.5 ppm O3, 4 h/day for 2 days (acute, n = 6), 6 wks (chronic, n = 6) or 6 wks + 1 wk recovery (chronic + recovery, n = 6). Secretion of glycoproteins (radiolabeled with 35SO4 and [3H]threonine), and transepithelial fluxes of Cl-, Na+ and water were subsequently measured in tracheal tissues in vitro, and were compared with values from control, unexposed sheep (n = 8). Acute O3 exposure increased basal secretion of sulfated glycoproteins (P less than 0.05), but had no effect on ion fluxes. Chronic exposure reduced basal glycoprotein secretion, but increased net Cl- secretion. Under open-circuit conditions, chronic exposure also induced net water secretion (P less than 0.05). With 7 days recovery, basal glycoprotein secretion (predominantly sulfated) was greatly increased above control, while the increased net secretion of Cl- and of water persisted (P less than 0.05). Histology of the airways indicated that acute exposure induced moderate hypertrophy of submucosal glands in the lower trachea (P less than 0.05), while chronic exposure (with and without recovery) induced a large hypertrophy of submucosal glands in both upper and lower trachea (P less than 0.05). Without recovery, however, the gland cells were devoid of secretory material, whereas with recovery they were full of secretory material. This suggests that the decreased glycoprotein secretion with chronic exposure alone resulted from incomplete replenishment of intracellular stores after 6 wks of stimulation. We conclude that both short- and long-term O3 exposure causes airway-mucus hypersecretion.  相似文献   

4.
Paths of ion transport across canine fetal tracheal epithelium   总被引:1,自引:0,他引:1  
Fluid secretion by the fetal sheep lung is thought to be driven by secretion of Cl- by the pulmonary epithelium. We previously demonstrated Cl- secretion by tracheal epithelium excised from fetal dogs and sheep. In this study we characterized the ion transport pathways across fetal canine tracheal epithelium. The transport of Na+ and Cl- across trachea excised from fetal dogs was evaluated from transepithelial electrical properties and isotope fluxes. Under basal conditions the tissues were characterized by a lumen-negative potential difference (PD) of 11 mV and conductance of 5.2 mS/cm2. The short-circuit current (Isc) was 43 microA/cm2 (1.6 mueq.cm-2.h-1). Basal Na+ flows were symmetrical, but net Na+ absorption (1.1 mueq.cm-2.h-1) could be induced by exposure of the luminal surface to amphotericin B (10(-6) M). Bilateral replacement of Na+ reduced Isc by 85%. Replacement of submucosal Na+ or exposure to submucosal furosemide (10(-4) M) reduced net Cl- secretion by 60-70%. Luminal exposure to indomethacin (10(-6) M) induced a 50% decrease in Isc, whereas isoproterenol (10(-6) M) increased Isc by 120%. The properties of the Cl- secretory pathway across fetal dog trachea are consistent with the model proposed for Cl- secretion across adult dog trachea and other Cl- -secreting tissues (e.g., bullfrog cornea and shark rectal gland). The absence of basal Na+ absorption by fetal dog trachea probably reflects limited apical membrane Na+ permeability.  相似文献   

5.
Evaporation of water from upper airway surfaces increases surface liquid osmolarity. We studied the effects of raised osmolarity of the solution bathing the luminal surface of excised canine tracheal epithelium. Osmolarity was increased by adding NaCl or mannitol. NaCl addition induced a concentration-dependent fall in short-circuit current and a rise in transepithelial conductance (-33% and +14% per 100 mosM, respectively). Unidirectional isotopic fluxes of 22Na, 36Cl, and [14C]mannitol were measured in short-circuited tissues in the base-line state and after addition of NaCl or mannitol to an isotonic mucosal solution. NaCl addition (75 mM) caused a 50% increase in conductance (G) and a parallel increase in [14C]mannitol permeability (Pmann), indicating an increase in paracellular permeability. Net Cl- secretion was reduced 50%, and net Na+ absorption was unchanged despite an increased chemical gradient for absorption, indicating an inhibition of active ion transport. Mannitol addition (150 mM) abolished net Na+ absorption but did not increase G or Pmann or change net Cl- secretion. These results suggest that responses to increased tracheal surface liquid osmolarity during spontaneous breathing may occur in both the cellular (inhibition of active Na+ and Cl- transport) and paracellular (increased [14C]mannitol permeability) compartments of the mucosa.  相似文献   

6.
Bioelectric properties and ion transport of excised human segmental/subsegmental bronchi were measured in specimens from 40 patients. Transepithelial electric potential difference (PD), short-circuit current (Isc), and conductance (G), averaged 5.8 mV (lumen negative), 51 microA X cm-2, and 9 mS X cm-2, respectively. Na+ was absorbed from lumen to interstitium under open- and short-circuit conditions. Cl- flows were symmetrical under short-circuit conditions. Isc was abolished by 10(-4) M ouabain. Amiloride inhibited Isc (the concentration necessary to achieve 50% of the maximal effect = 7 X 10(-7) M) and abolished net Na+ transport. PD and Isc were not reduced to zero by amiloride because a net Cl- secretion was induced that reflected a reduction in Cl- flow in the absorptive direction (Jm----sCl-). Acetylcholine (10(-4) M) induced an electrically silent, matched flow of Na+ (1.7 mueq X cm-1 X h-1) and Cl- (1.9 mueq X cm-12 X h-1) toward the lumen. This response was blocked by atropine. Phenylephrine (10(-5) M) did not affect bioelectric properties or unidirectional ion flows, whereas isoproterenol (10(-5) M) induced a small increase in Isc (10%) without changing net ion flows significantly. We conclude that 1) Na+ absorption is the major active ion transport across excised human bronchi, 2) Na+ absorption is both amiloride and ouabain sensitive, 3) Cl- secretion can be induced by inhibition of the entry of luminal Na+ into the epithelia, and 4) cholinergic more than adrenergic agents modulate basal ion flow, probably by affecting gland output.  相似文献   

7.
The effects on transepithelial ion transports of chloropyramine, dimetindene and diphenhydramine, which are three antagonists of H1-receptors of histamine, were examined in bovine tracheal epithelium and in frog skin. The short-circuit current I0 across bovine tracheal epithelium is the sum of active secretion of Cl- and absorption of Na+. In this tissue, all three drugs induced a reversible, dose-related inhibition of I0, up to 100%. The concentrations giving 50% of maximal effect were 1.4 X 10(-4) M for chloropyramine, 2.0 X 10(-4) M for dimetindene and 2.5 X 10(-4) M for diphenhydramine. The effect was unrelated to the agonist binding site of H1-receptors of histamine, since it was not altered in the presence of 10(-3) M histamine. Experiments in which Na+ transport was selectively reduced by 5 X 10(-5) M amiloride, or in which Cl- transport was selectively abolished by 10(-3) M furosemide, 10(-4) M bumetanide or Cl- removal, indicated that Na+ and Cl- transports were equally affected by the drugs. The action of chloropyramine was composed of an early inhibition of Na+ and Cl- movements, followed by a slow recovery of Cl- secretion. In frog skin, each one of the three H1-antagonists modified the I0, following two main patterns of response, a stimulation at the lower concentrations tested, or an inhibition at higher concentrations. Dose-response relationships were obscured by a large variability in response of individual skins. These observations in bovine tracheal epithelium and frog skin suggest that H1-antagonists might alter the functioning of other epithelia as well.  相似文献   

8.
Knowledge of liquid secretion by fetal lung stems from studies of sheep. We extended these studies to dogs and examined the persistence of the fetal pattern of airway epithelial permeability and ion transport in the neonatal animal. Plasma and lung liquid from fetal dogs were analyzed for Na+, K+, Cl-, and HCO3-. Only the Cl- concentration of fetal lung liquid (129 meq/l) was significantly different from that of fetal plasma (111 meq/l). Segments of trachea from fetal and neonatal (less than 1, 7-10, and 21-46 days after birth) dogs were excised and mounted in flux chambers. The transepithelial potential difference (PD) of all tissues was oriented lumen negative (9.8-14.8 mV). Under short-circuit conditions, unidirectional Na+ flows were symmetrical. Cl- was secreted, and the secretion was equivalent to short-circuit current (Isc). Cl- secretion persisted under open-circuit conditions. Lobar bronchi from 21- to 46-day neonates absorbed Na+ (1.9 mueq.cm-2.h-1), but unidirectional flows of Cl- were symmetrical. Amiloride (10(-4) M) reduced Isc of neonatal bronchi by 47% but did not affect fetal bronchi. Isoproterenol increased Isc of both fetal (33%) and neonatal (40%) bronchi. These responses suggest that fetal bronchi do not absorb Na+ but can be stimulated to secrete Cl-. We conclude that Cl- secretion by epithelium of large airways may contribute to fetal lung liquid production, but it is unlikely that the tracheal epithelium is involved in fluid absorption at birth. Whereas fetal bronchi appear to secrete Cl-, neonatal bronchi absorb Na+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Under short-circuit conditions, vasoactive intestinal peptide (VIP) did not alter net Na+ movement but selectively stimulated net Cl- secretion across dog tracheal epithelium with a high affinity (Km congruent to 10(-8) M). The increase in Cl- secretion was not different from the rise in short-circuit current (Isc). However, stimulation of Cl- secretion was not maximal, because the addition of isoproterenol (10(-6) M) to VIP-treated tissues further increased the Isc by 54%. The effect of exogenous VIP was not blocked by a combination of atropine, phentolamine, propranolol (10(-5) or 10(-6) M), or tetrodotoxin (10(-6) M). Under open-circuit conditions, VIP caused an increase in the net secretion of Cl- and Na+, but the changes did not reach statistical significance. We conclude that VIP acts directly on receptors on the surface of epithelial cells to stimulate active Cl- secretion. The abundance of VIP nerves in the submucosa suggests that VIP may be important in regulation of fluid movement across the epithelium.  相似文献   

10.
Unidirectional and net isotopic fluxes of Na+ and Cl- were determined at steady state across isolated stomach of rat fetuses on days 19 and 21. On day 19, when parietal cells are not yet functional, net absorptions of Na+ and Cl- (respectively: 3.8 +/- 1.1 and 5.2 +/- 1.7 mu eq X h-1 X cm-2) were observed. By contrast, active secretion of Cl- (-2.1 +/- 1.8 mu eq X h-1 X cm-2) associated with decreased absorption of Na+ (45%) was noted on day 21, and both Na+ and Cl- net movements accounted for the short-circuit current, as observed on adult gastric mucosa. These results show that Na+ active absorption precedes Cl- secretion in fetal rat at the time of parietal cells differenciation.  相似文献   

11.
Segments of fetal and maternal trachea, maternal bronchi from near-term sheep, and trachea and bronchi from nonpregnant adult sheep were excised and mounted as sheets in Ussing chambers. The conductance (G) for each group of tissues was similar (approximately 4 mS/cm-2); the short circuit current (Isc) ranged from 45-90 microA/cm-2. Under short-circuit or open-circuit conditions trachea and bronchi from pregnant and nonpregnant adult animals absorbed Na+, whereas fetal trachea secreted Cl-. Short-circuited maternal bronchi secreted K+, whereas maternal and fetal trachea did not. Isoproterenol induced an increase in Isc, G, and Cl- secretion of fetal trachea. Maternal trachea and bronchi were not affected. Amiloride reduced Na+ absorption and Isc of maternal trachea and bronchi, but had little effect on fetal trachea. The permeability of fetal trachea to 14C-mannitol was 17 X 10(-7) cm/s and was not affected by isoproterenol. The permeation of dextran (10 K) and horseradish peroxidase across fetal trachea and of all three probes across maternal airways did not reach steady state, but the relative rates were compatible with an equivalent pore radius greater than 4 nm. We conclude that ion transport in fetal large airways contributes to the Cl- and liquid secretion by the entire fetal pulmonary epithelium, whereas resting ion transport of large airways from adult sheep, like that of mature airways of many species, is dominated by Na+ absorption. All of these airway epithelia are characterized by large paracellular aqueous paths.  相似文献   

12.
The possible existence of transepithelial bicarbonate transport across the isolated bovine ciliary body was investigated by employing a chamber that allows for the measurement of unidirectional, radiolabeled fluxes of CO2 + HCO. No net flux of HCO was detected. However, acetazolamide (0.1 mM) reduced the simultaneously measured short-circuit current (I(sc)). In other experiments in which (36)Cl- was used, a net Cl- flux of 1.12 microeq. h(-1). cm(-2) (30 microA/cm(2)) in the blood-to-aqueous direction was detected. Acetazolamide, as well as removal of HCO from the aqueous bathing solution, inhibited the net Cl- flux and I(sc). Because such removal should increase HCO diffusion toward the aqueous compartment and increase the I(sc), this paradoxical effect could result from cell acidification and partial closure of Cl- channels. The acetazolamide effect on Cl- fluxes can be explained by a reduction of cellular H+ and HCO (generated from metabolic CO2 production), which exchange with Na+ and Cl- via Na+/H+ and Cl-/HCO exchangers, contributing to the net Cl- transport. The fact that the net Cl- flux is about three times larger than the I(sc) is explained with a vectorial model in which there is a secretion of Na+ and K+ into the aqueous humor that partially subtracts from the net Cl- flux. These transport characteristics of the bovine ciliary epithelium suggest how acetazolamide reduces intraocular pressure in the absence of HCO transport as a driving force for fluid secretion.  相似文献   

13.
The unidirectional fluxes of 20, 100, 500, and 2,000 microM rho-aminohippurate (PAH) were measured under open- and short-circuit conditions in canine tracheal epithelium mounted as flat sheets in Ussing chambers. In tissues pretreated with mucosal indomethacin (10(-6) M) and amiloride (10(-4) M), unidirectional PAH fluxes under short-circuit conditions increased with increasing bath concentrations but there was no significant net PAH transport. After stimulation of chloride secretion by mucosal cyclic adenosine 3',5' -cyclic monophosphate (cAMP 10(-3) M), there was a significant increase in the secretory flux of PAH and a significant decrease in the absorptive flux of PAH. This resulted in net PAH secretion that demonstrated saturation kinetics with an apparent Michaelis-Menten constant of 754 microM by Lineweaver-Burk analysis. Intracellular concentrations of PAH were 0.4-1.2 times bath concentrations after pretreatment with indomethacin and amiloride and increased to 2.6-3.3 times bath concentrations after cAMP. Under open-circuit conditions, secretory PAH flux decreased and absorptive flux increased resulting in net PAH absorption. We conclude from these early studies that the canine tracheal epithelium possesses a specialized system for the transport of organic anions in the airways and that this transport system may share many similarities with organic anion transport in the kidney.  相似文献   

14.
Net fluxes of water, Na+, K+, Cl-, HCO3- and volatile fatty acids (VFA) were investigated in three different segments of rabbit colon. Two opposite phenomena occurred: secretion of water and inorganic ions in the oral part of the colon and absorption in the remaining colon; VFA were always absorbed. The movement of cations was closely correlated with those of VFA and Cl-. Results are consistent with the presence of exchange: Na+/H+, K+/H+, in the colon brush border membrane. In fact net absorption of cations and VFA seems linked to the availability of protons. In the absence of net cation transport an additional source of protons may be provided by hydration of luminal CO2. So VFA could enter mucosa by passive diffusion as the undissociated acids.  相似文献   

15.
The effect of vanadate (orthovanadate, VO4-) on water and ion transport was studied in rat jejunum. Water transport was tested by single-pass perfusion in vivo and ion fluxes by the Ussing-chamber technique in vitro. The results suggest that vanadate has two actions on ion and water transport: At low concentrations (10(-4) M) it causes Cl-, Na+ and water secretion by stimulation of adenylate cyclase; At higher concentrations (10(-3) and 10(-2) M) it decreases net absorption of Na+ and Cl- by inhibition of (Na+ + K+)-ATPase.  相似文献   

16.
The unidirectional fluxes of Na+ and Cl- were studied in Salmonella typhimurium enterotoxin-treated rats. There was net secretion of Na+ and Cl- in toxin-treated animals, while in control animals there was net absorption of these ions. In the presence of the Ca(2+)-ionophore, there was net secretion of Na+ and Cl- in the control group, while the ionophore enhanced the secretion of these ions in experimental animals. The calcium channel blocker, verapamil, decreased the secretion induced by salmonella toxin, but could not reverse the secretion to absorption. There was no difference in the net absorption of Ca2+ in both the control and experimental animals. There was a significant increase in the intracellular free calcium concentrations in enterocytes isolated from toxin-treated rat intestines as compared to that in enterocytes isolated from control animals. In the presence of PMA (phorbol-12-myristated-13-acetate) there was net secretion of Na+ and Cl- in the control group, while in the experimental group there was no change in the fluxes of these ions. The selective, potent inhibitor of protein kinase C, H-7 (1-(5-isoquinolinylsulphonyl)-2-methylpiperazine) reversed the secretion of Na+ and Cl- in the toxin-treated group to absorption. The addition of indomethacin also inhibited the secretion induced by salmonella toxin, but failed to reverse it to absorption. However, the addition both H-7 and indomethacin to the experimental group had a partial additive effect. These studies demonstrate that the Salmonella enterotoxin-mediated fluid secretion involves protein kinase C and the arachidonic acid metabolites and perhaps does not involve the extracellular calcium pools.  相似文献   

17.
Mammalian bronchial epithelium absorbs Na+ under basal conditions, but Cl- secretion can be induced. We studied the effects of several modes of metabolic inhibition on the bioelectric properties and solute permeability of dog bronchial epithelium mounted in Ussing chambers. Net Na+ absorption and short-circuit current were inhibited by approximately 75% by hypoxia or by 10(-3) M NaCN. The reduced net Na+ absorption was characterized by a decrease in absorptive flux and an increase in backflux. The latter change was proportional to an increase in permeability to [14C]mannitol, implying that solute flow through a paracellular shunt was increased. In contrast, the reduction of conductance expected from exposure to amiloride (0.94 +/- 0.15 ms/cm2 or 12%) was abolished by NaCN pretreatment. Metabolic inhibition also decreased epithelial conductance and unidirectional Cl- fluxes by approximately 25%. NaCN rapidly and reversibly inhibited the hyperpolarization of potential difference (PD) induced by low luminal bath [Cl-]. This effect was mimicked by the Cl- channel blocker, 5-nitro-2-(3-phenylpropylamino) benzoic acid. Because the transepithelial Cl- diffusion PD reflects, in part, the depolarization of the Cl- -conductive apical cell membrane, metabolic inhibition appears to affect this path. We conclude that metabolic inhibition not only decreased net ion transport by dog bronchial epithelium but also inhibited cellular Na+- and Cl- -conductive pathways and increased paracellular permeability.  相似文献   

18.
The mucosal-to-serosal and serosal-to-mucosal fluxes of Na+ and Cl- were carried out in control and heat-labile enterotoxin treated mice in the presence or absence of Ca2(+)-ionophore A23187, the activator of Ca2(+)-calmodulin or Phorbol-12-myristate-13-acetate (PMA), the activator of Protein kinase C (PKC) or 1-(5-isoquinolinyl sulphonyl)-2-methyl piperazine (H-7), an inhibitor of PKC. There was net secretion of Na+ and Cl- in experimental group in comparison to net absorption in control group. The addition of ionophore or PMA resulted in net secretion of Na+ and Cl- in control group. In experimental group ionophore increased the net secretion of Na+ and Cl- while, PMA could not cause any change in Na+ and Cl- fluxes in experimental group. Calmodulin activity remained unaltered in heat-labile enterotoxin treated mice as compared to control. H-7, reversed the effects of PMA and heat-labile enterotoxin. These studies demonstrate that heat-labile enterotoxin primarily involves PKC in its action.  相似文献   

19.
The transmucosal fluxes of Na+ and Cl- were studied in Giardia lamblia infected mice in the presence or absence of phorbol-12-myristate-13-acetate (PMA), the activator of protein kinase C (PKC) or 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H-7), the inhibitor of PKC or Ca(2+)-calmodulin. There was net secretion of Na+ and Cl- in infected animals, while in control animals there was net absorption of these ions. The addition of ionophore or PMA resulted in net secretion of Na+ and Cl- in the control group while in the infected group there was no change in the fluxes of these ions. The selective potent inhibitor of protein kinase C, H-7, reversed the secretion of Na+ and Cl- in infected group to absorption. The addition of PMA and Ca(2+)-ionophore together in the infected group had a partial additive effect. This study suggests that G. lamblia induced fluid secretion involves protein kinase C and further protein kinase C acts in synergism with calcium.  相似文献   

20.
The identity of the current carriers in canine lingual epithelium in vitro   总被引:2,自引:0,他引:2  
Ion transport across the lingual epithelium has been implicated as an early event in gustatory transduction. The fluxes of isotopically labelled Na+ and Cl- were measured across isolated canine dorsal lingual epithelium under short-circuit conditions. The epithelium actively absorbs Na+ and to a lesser extent actively secretes Cl-. Under symmetrical conditions with Krebs-Henseleit buffer on both sides, (1) Na+ absorption accounts for 46% of the short-circuit current (Isc); (2) there are two transcellular Na+ pathways, one amiloride-sensitive and one amiloride-insensitive; (3) ouabain, added to the serosal solution, inhibits both Isc and active Na+ absorption. When hyperosmotic (0.25 M) NaCl is placed in the mucosal bath, both Isc and Na+ absorption increase; net Na+ absorption is at least as much as Isc. Ion substitution studies indicate that the tissue may transport a variety of larger ions, though not as effectively as Na+ and Cl-. Thus we have shown that the lingual epithelium, like other epithelia of the gastrointestinal tract, actively transports ions. However, it is unusual both in its response to hyperosmotic solutions and in the variety of ions that support a transepithelial short-circuit current. Since sodium ion transport under hyperosmotic conditions has been shown to correlate well with the gustatory neural response, the variety of ions transported may likewise indicate a wider role for transport in taste transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号