首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aquatic ecosystems can be chronically stressed by multiple environmental factors which originate from a variety of point and non-point sources. In addition, these stressors may vary both spatially and temporally, and, combined with synergestic and cumulative interactions of these stressors, complicate the interpretation and evaluation of stress responses in organisms. To help identify and differentiate between sources of anthropogenic stressors in aquatic systems, a diagnostic approach based on exposure-response profiles in sentinel organisms was developed from the known effects of various anthropogenic activities on biological systems. To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical, pulp and paper, domestic sewage, mining operations, land-development, and agricultural activities. Biomarkers of exposure to environmental stressors varied widely depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, growth, reproductive impairment, and community-level endpoints were similar among several of the major anthropogenic activities because responses at these higher levels are less specific to stressors than are biomarkers. This approach appears useful for helping to identify and diagnose sources of stress in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors impacting key components of biological systems, aquatic ecosystems can be more effectively protected, regulated, and managed to help improve and maintain environmental quality and ecosystem fitness.  相似文献   

2.
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.  相似文献   

3.
We describe a range of anthropogenic stressors thatimpact seabirds, review the effects of these stressorson individuals and populations and discuss the roleand value of seabirds as monitors of marine ecosystemhealth. Stressors described are restricted to thosewhich affect seabirds directly or indirectly throughthe marine environment; we have not dealt withterrestrially based stressors such as introducedmammalian predators or loss of habitat, which canpotentially affect seabirds whilst breeding. Wediscuss three broad categories of stress in seabirds.Marine pollutants (including biologicallynon-essential heavy metals, oil, organic pesticidesand polychlorinated biphenyls (PCBs), and plastics),industrial fisheries (further divided into the effectsof depletion of prey stocks and direct mortality), andclimate change. Additionally we highlight the role ofseabirds as monitors of marine ecosystem health,taking the example of long-term mercury contaminationas a case study. We conclude that seabirds are exposedto an increasing array of potential stressors, andthat the impact of a particular source of stress onseabirds varies markedly between species in relationto foraging and breeding ecology. The most seriousthreat to seabirds is direct mortality of adultsresulting from industrial and commercial fishingactivities. In some cases this is a significant threatto individual populations or even entire species.  相似文献   

4.
Experimental studies have highlighted the potential influence of contaminants on marine mammal immune function and anthropogenic contaminants are commonly believed to influence the development of diseases observed in the wild. However, estimates of the impact of contaminants on wild populations are constrained by uncertainty over natural variation in disease patterns under different environmental conditions. We used photographic techniques to compare levels of epidermal disease in ten coastal populations of bottlenose dolphins (Tursiops truncatus) exposed to a wide range of natural and anthropogenic conditions. Epidermal lesions were common in all populations (affecting > 60% of individuals), but both the prevalence and severity of 15 lesion categories varied between populations. No relationships were found between epidermal disease and contaminant levels across the four populations for which toxicological data were available. In contrast, there were highly significant linear relationships with oceanographic variables. In particular, populations from areas of low water temperature and low salinity exhibited higher lesion prevalence and severity. Such conditions may impact on epidermal integrity or produce more general physiological stress, potentially making animals more vulnerable to natural infections or anthropogenic factors. These results show that variations in natural environmental factors must be accounted for when investigating the importance of anthropogenic impacts on disease in wild marine mammals.  相似文献   

5.
Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.  相似文献   

6.
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species‐specific regional scale climate change research is most commonly published, and “supporting” is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines.  相似文献   

7.
Global increases in environmental noise levels – arising from expansion of human populations, transportation networks, and resource extraction – have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource‐management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two‐thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger‐scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise‐source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural‐resource managers in predicting potential outcomes of noise exposure.  相似文献   

8.
The inception of ecological immunology has led to an increase in the number of studies investigating the impact of environmental stressors on host immune defence mechanisms. This in turn has led to an increased understanding of the importance of invertebrate groups for immunological research. This review discusses the advances made within marine invertebrate ecological immunology over the past decade. By demonstrating the environmental stressors tested, the immune parameters typically investigated, and the species that have received the greatest level of investigation, this review provides a critical assessment of the field of marine invertebrate ecological immunology. In highlighting the methodologies employed within this field, our current inability to understand the true ecological significance of any immune dysfunction caused by environmental stressors is outlined. Additionally, a number of examples are provided in which studies successfully demonstrate a measure of immunocompetence through alterations in disease resistance and organism survival to a realized pathogenic threat. Consequently, this review highlights the potential to advance our current understanding of the ecological and evolutionary significance of environmental stressor related immune dysfunction. Furthermore, the potential for the advancement of our understanding of the immune system of marine invertebrates, through the incorporation of newly emerging and novel molecular techniques, is emphasized.  相似文献   

9.
Marine organisms are simultaneously exposed to anthropogenic stressors with likely interactive effects, including synergisms in which the combined effects of multiple stressors are greater than the sum of individual effects. Early life stages of marine organisms are potentially vulnerable to the stressors associated with global change, but identifying general patterns across studies, species and response variables is challenging. This review represents the first meta‐analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied. Knowledge gaps in research on multiple abiotic stressors and early life stages are also identified. The meta‐analysis yielded several key results: (1) Synergistic interactions (65% of individual tests) are more common than additive (17%) or antagonistic (17%) interactions. (2) Larvae are generally more vulnerable than embryos to thermal and pH stress. (3) Survival is more likely than sublethal responses to be affected by thermal, salinity and pH stress. (4) Interaction types vary among stressors, ontogenetic stages and biological responses, but they are more consistent among phyla. (5) Ocean acidification is a greater stressor for calcifying than noncalcifying larvae. Despite being more ecologically realistic than single‐factor studies, multifactorial studies may still oversimplify complex systems, and so meta‐analyses of the data from them must be cautiously interpreted with regard to extrapolation to field conditions. Nonetheless, our results identify taxa with early life stages that may be particularly vulnerable (e.g. molluscs, echinoderms) or robust (e.g. arthropods, cnidarians) to abiotic stress. We provide a list of recommendations for future multiple stressor studies, particularly those focussed on early marine life stages.  相似文献   

10.
11.
Estuaries are highly valuable ecosystems that provide various goods and services to society, such as food provision and supporting nursery habitats for various aquatic species. Estuarine habitat quality assessment is thus critical in managing both ecological and economic value. In this work, various biological and non-biological indicators of habitat quality in estuarine nursery areas were determined, encompassing local environmental conditions, chemical contamination, anthropogenic pressures, juvenile Solea senegalensis condition, biomarkers response to contamination and juvenile density. The various indicators provided an integrated view on habitat quality and their responses were broadly concordant. Nursery quality assessment based on anthropogenic pressure indicators and fish biomarker responses were very similar, signaling nursery areas with higher anthropogenic pressure in Tejo and Ria de Aveiro estuaries. Yet, favorable environmental conditions across all sites could have contributed to lessen the potential hazardous biological effects of exposure to anthropogenic stressors, resulting in soles’ fairly good condition and generally high juvenile density. Nevertheless, a mismatch between high juvenile density and high estuarine contribution to adult coastal populations was observed in areas with higher anthropogenic pressures. Although a causal relationship cannot be established, the results emphasize the need to fully understand how the estuarine period spent in estuaries and local processes determine the quantity and quality of juveniles exported to marine adult populations, which is critical to achieve the full potential of the fish production service of estuaries and coastal stock replenishment.  相似文献   

12.
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate‐related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate‐influenced variables including sea‐surface temperature, southern oscillation indices (SOI, Z4), wind‐wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO‐related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate‐related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.  相似文献   

13.
14.
Multiple natural and anthropogenic stressors impact coral reefs across the globe leading to declines of coral populations, but the relative importance of different stressors and the ways they interact remain poorly understood. Because coral reefs exist in environments commonly impacted by multiple stressors simultaneously, understanding their interactions is of particular importance. To evaluate the role of multiple stressors we experimentally manipulated three stressors (herbivore abundance, nutrient supply, and sediment loading) in plots on a natural reef in the Gulf of Panamá in the Eastern Tropical Pacific. Monitoring of the benthic community (coral, macroalgae, algal turf, and crustose coralline algae) showed complex responses with all three stressors impacting the community, but at different times, in different combinations, and with varying effects on different community members. Reduction of top–down control in combination with sediment addition had the strongest effect on the community, and led to approximately three times greater algal biomass. Coral cover was reduced in all experimental units with a negative effect of nutrients over time and a synergistic interaction between herbivore exclosures and sediment addition. In contrast, nutrient and sediment additions interacted antagonistically in their impacts on crustose coralline algae and turf algae so that in combination the treatments limited each other’s effects. Interactions between stressors and temporal variability indicated that, while each stressor had the potential to impact community structure, their combinations and the broader environmental conditions under which they acted strongly influenced their specific effects. Thus, it is critical to evaluate the effects of stressors on community dynamics not only independently but also under different combinations or environmental conditions to understand how those effects will be played out in more realistic scenarios.  相似文献   

15.
Guadalupe fur seals are a threatened species with few breeding locations, which potentially makes them sensitive to environmental or anthropogenic stressors. We present the first study to quantify adrenal and thyroid function in this species in an effort to measure their stress response to capture. We analyzed a suite of corticosteroid hormones released over time during capture in both adult females (n = 10) and weanling pups (n = 26) during March 2016. Multiple corticosteroids were released during capture, and aldosterone was associated with the response to stress in adults only. These results suggest the regulation of aldosterone secretion in association with the HPA axis in otariids as reported in other marine mammals. Individuals varied markedly in the magnitude of their endocrine response to capture. A lower total integrated stress response to capture for both cortisol and corticosterone was associated with decreased concentrations of thyroid hormone T3 and elevated concentrations of reverse T3 (rT3), suggesting parallel downregulation of adrenal and thyroid endocrine axes in some individuals. A scaled body condition index was negatively associated with T3 and positively associated with rT3 in adults. Together these findings suggest utility in using endocrine responses to capture stress to evaluate individual and population health.  相似文献   

16.
In a rapidly changing world, phenotypic plasticity may be a critical mechanism allowing populations to rapidly acclimate when faced with novel anthropogenic stressors. Theory predicts that if exposure to anthropogenic stress is heterogeneous, plasticity should be maintained as it allows organisms to avoid unnecessary expression of costly traits (i.e., phenotypic costs) when stressors are absent. Conversely, if exposure to stressors becomes constant, costs or limits of plasticity may lead to evolutionary trait canalization (i.e., genetic assimilation). While these concepts are well‐established in theory, few studies have examined whether these factors explain patterns of plasticity in natural populations facing anthropogenic stress. Using wild populations of wood frogs that vary in plasticity in tolerance to pesticides, the goal of this study was to evaluate the environmental conditions under which plasticity is expected to be advantageous or detrimental. We found that when pesticides were absent, more plastic populations exhibited lower pesticide tolerance and were more fit than less plastic populations, likely avoiding the cost of expressing high tolerance when it was not necessary. Contrary to our predictions, when pesticides were present, more plastic populations were as fit as less plastic populations, showing no signs of costs or limits of plasticity. Amidst unprecedented global change, understanding the factors shaping the evolution of plasticity will become increasingly important.  相似文献   

17.
Ecosystems face multiple anthropogenic threats globally, and the effects of these environmental stressors range from individual‐level organismal responses to altered system functioning. Understanding the combined effects of stressors on process rates mediated by individuals in ecosystems would greatly improve our ability to predict organismal multifunctionality (e.g. multiple consumer‐mediated functions). We conducted a laboratory experiment to test direct and indirect, as well as immediate and delayed effects of a heat wave (pulsed stress) and micropollutants (MPs) (prolonged stress) on individual consumers (the great pond snail Lymnaea stagnalis) and their multifunctionality (i.e. consumption of basal resources, growth, reproduction, nutrient excretion and organic‐matter cycling). We found that stressful conditions increased the process rates of multiple functions mediated by individual consumers. Specifically, the artificial heat wave increased process rates in the majority of the quantified functions (either directly or indirectly), whereas exposure to MPs increased consumption of basal resources which led to increases in the release of nutrients and fine particulate organic matter. Moreover, snails exposed to a heat wave showed decreased reproduction and nutrient excretion after the heat‐wave, indicating the potential for ecologically relevant delayed effects. Our study indicates that the immediate and delayed effects of stressors on individual organisms may directly and indirectly impact multiple ecosystem functions. In particular, delayed effects of environmental stress on individual consumers may cumulatively impede recovery due to decreased functioning following a perturbation. Reconciling these results with studies incorporating responses at higher levels of biological complexity will enhance our ability to forecast how individual responses upscale to ecosystem multifunctionality.  相似文献   

18.
This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.  相似文献   

19.
Understanding the implications of different management strategies is necessary to identify best conservation trajectories for ecosystems exposed to anthropogenic stressors. For example, science-based risk assessments at large scales are needed to understand efficacy of different vector management approaches aimed at preventing biological invasions associated with commercial shipping. We conducted a landscape-scale analysis to examine the relative invasion risk of ballast water discharges among different shipping pathways (e.g., Transoceanic, Coastal or Domestic), ecosystems (e.g., freshwater, brackish and marine), and timescales (annual and per discharge event) under current and future management regimes. The arrival and survival potential of nonindigenous species (NIS) was estimated based on directional shipping networks and their associated propagule pressure, environmental similarity between donor-recipient ecosystems (based on salinity and temperature), and effects of current and future management strategies (i.e., ballast water exchange and treatment to meet proposed international biological discharge standards). Our findings show that current requirements for ballast water exchange effectively reduce invasion risk to freshwater ecosystems but are less protective of marine ecosystems because of greater environmental mismatch between source (oceanic) and recipient (freshwater) ecoregions. Future requirements for ballast water treatment are expected to reduce risk of zooplankton NIS introductions across ecosystem types but are expected to be less effective in reducing risk of phytoplankton NIS. This large-scale risk assessment across heterogeneous ecosystems represents a major step towards understanding the likelihood of invasion in relation to shipping networks, the relative efficacy of different invasion management regimes and seizing opportunities to reduce the ecological and economic implications of biological invasions.  相似文献   

20.
Developmental stressors are increasingly recognised for their pervasive influence on the ecology and evolution of animals. In particular, many studies have focused on how developmental stress can give rise to variation in adult behaviour, physiology, and performance. However, there remains a poor understanding of whether general patterns exist in the effects and magnitude of phenotypic responses across taxonomic groups. Furthermore, given the extensive phenotypic variation that arises from developmental stressors, it remains important to ascertain how multiple processes may explain these responses. We compiled data from 111 studies to examine and quantify the effect of developmental stress on animal phenotype and performance from juveniles to adulthood, including studies from birds, reptiles, fish, mammals, insects, arachnids, and amphibians. Using meta‐analytic approaches, we show that across all studies there is, on average, a moderate to large negative effect of developmental stress exposure (posterior mean effect: |d| = ?0.51) on animal phenotype or performance. Additionally, we demonstrate that interactive effects of timing of stressor onset and the duration of exposure to stressors best explained variation in developmental stress responses. Animals exposed to stressors earlier in development had more‐positive responses than those with later onset, whereas longer duration of exposure to a stressor caused responses to be stronger in magnitude. However, the high amount of heterogeneity in our results, and the low degree of variance explained by fixed effects in both the meta‐analysis (R2 = 0.034) and top‐ranked meta‐regression model (R2 = 0.02), indicate that phenotypic responses to developmental stressors are likely highly idiosyncratic in nature and difficult to predict. Despite this, our analyses address a critical knowledge gap in understanding what effect developmental stress has on phenotypic variation in animals. Additionally, our results highlight important environmental and proximate factors that may influence phenotypic responses to developmental stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号