首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adult neurogenesis in the olfactory bulb of rodents is provided by cells which migrate tangentially from their site of genesis into the forebrain subependymal layer (SEL). This migration involves 'chains' of neuroblasts sliding into a meshwork of astrocytic cells and processes (glial tubes). The analysis of this process in postnatal rodents and in adult rabbits reveals different types of relationships occurring both among the migrating cells and between these cells and the glial structures of the SEL.  相似文献   

2.
Stressful experience during the early postnatal period may influence processes associated with neurogenesis (i.e. proliferation, cell death, appearance of astrocytes or cell differentiation) in the neonatal rat rostral migratory stream (RMS). To induce stress, pups were subjected to maternal deprivation daily for three hours, starting from the first postnatal day till the seventh postnatal day. Immunohistochemical methods were used to visualize proliferating cells and astrocytes; dying cells and nitrergic cells were visualized using histochemical staining. Quantitative analysis showed that maternal deprivation decreased the number of proliferating cells and significantly increased the number of dying cells in the RMS. Maternal deprivation did not influence the appearance of astrocytes in the RMS, but caused premature differentiation of nitrergic cells. In control rats, nitrergic cells can be observed in the RMS as early as the tenth postnatal day. In maternally deprived pups, these cells were detected as early as the seventh postnatal day. The observed earlier appearance of nitrergic cells in the RMS was associated with altered proliferation and increased cell dying and this observation supports the hypothesis that nitric oxide has an anti-proliferative role in the RMS. Our study demonstrates that maternal deprivation represents a stressful condition with a profound impact on early postnatal neurogenesis.  相似文献   

3.
In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the olfactory bulb in a track known as the rostral migratory stream (RMS). To facilitate the study of neural progenitor cells and stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent, dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU) was administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin), but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in large animal models of neurologic disease.  相似文献   

4.
The objective of this study was to investigate whether stressful experience during early postnatal period may influence morphological characteristics of the rat neurogenic pathway--the rostral migratory stream (RMS) and proliferation of neuronal precursors in three successive areas of the RMS: in the vertical arm, the elbow and the horizontal arm. To induce stress, the pups were subjected to repeated maternal deprivation during the first postnatal week after birth. Brains were analyzed at the seventh postnatal day. The controls matched the age of maternally deprived animals. Observation of hematoxylin-eosin stained sections showed that maternal deprivation did not affect the general morphological appearance of the RMS. The shape of the RMS of maternally deprived rats resembles the RMS of control animals. Maternal deprivation caused slight, not significant increase in the RMS thickness in comparison with control rats. Significant difference between the control and maternally deprived rats concerns the olfactory ventricle. While in seven days old control rats the olfactory ventricle is completely closed, in maternally deprived rats of the same age the olfactory ventricle was regularly visible as a narrow lumen at the axis of the RMS horizontal arm. This finding indicates delayed maturation of the migratory pathway as a consequence of stress. Proliferation activity has been assessed by immunoreactivity of the endogenous cell cycle protein Ki-67. The results of Ki-67 immunohistochemistry showed that seven days' maternal separation for 3 h daily induces significant quantitative changes in the number of proliferating cells within the RMS. The response of Ki-67-positive cells to stress differed in individual part of the RMS, with a marked decrease in the vertical arm and a significant increase in the elbow, suggesting heterogeneity of neural stem cells along the RMS; while in the RMS vertical arm the number of dividing cells significantly decreased, there was a marked increase of Ki-67-positive cells in the RMS elbow. This suggests heterogeneity of neural stem cells along the RMS.  相似文献   

5.
Most olfactory bulb (OB) interneurons are derived from neural stem cells in the subventricular zone (SVZ) and migrate to the OB via the rostral migratory stream (RMS). Mature dopaminergic interneurons in the OB glomerular layer are readily identified by their synaptic activity-dependent expression of tyrosine hydroxylase (TH). Paradoxically, TH is not expressed in neural progenitors migrating in the RMS, even though ambient GABA and glutamate depolarize these progenitors. In forebrain slice cultures prepared from transgenic mice containing a GFP reporter gene under the control of the Th 9 kb upstream regulatory region, treatment with histone deacetylase (HDAC) inhibitors (either sodium butyrate, Trichostatin A or Scriptaid) induced Th-GFP expression specifically in the RMS independently of depolarizing conditions in the culture media. Th-GFP expression in the glomerular layer was also increased in slices treated with Trichostatin A, but this increased expression was dependent on depolarizing concentrations of KCl in the culture media. Th-GFP expression was also induced in the RMS in vivo by intra-peritoneal injections with either sodium butyrate or valproic acid. Quantitative RT-PCR analysis of neurosphere cultures confirmed that HDAC inhibitors de-repressed Th expression in SVZ-derived neural progenitors. Together, these findings suggest that HDAC function is critical for regulating Th expression levels in both neural progenitors and mature OB dopaminergic neurons. However, the differential responses to the combinatorial exposure of HDAC inhibitors and depolarizing culture conditions indicate that Th expression in mature OB neurons and neural progenitors in the RMS are regulated by distinct HDAC-mediated mechanisms.  相似文献   

6.

Background

The blood brain barrier (BBB) is impermeable to most drugs, impeding the establishment of novel neuroprotective therapies and strategies for many neurological diseases. Intranasal administration offers an alternative path for efficient drug delivery into the CNS. So far, the anatomical structures discussed to be involved in the transport of intranasally administered drugs into the CNS include the trigeminal nerve, olfactory nerve and the rostral migratory stream (RMS), but the relative contributions are debated.

Methods and Findings

In the present study we demonstrate that surgical transection, and the resulting structural disruption of the RMS, in mice effectively obstructs the uptake of intranasally administered radioligands into the CNS. Furthermore, using a fluorescent cell tracer, we demonstrate that intranasal administration in mice allows agents to be distributed throughout the entire brain, including olfactory bulb, hippocampus, cortex and cerebellum.

Conclusions

This study provides evidence of the vital role the RMS has in the CNS delivery of intranasally administered agents. The identification of the RMS as the major access path for intranasally administered drugs into the CNS may contribute to the development of treatments that are tailored for efficient transport within this structure. Research into the RMS needs to continue to elucidate its limitations, capabilities, mechanisms of transport and potential hazards before we are able to advance this technique into human research.  相似文献   

7.
8.
Wang C  Liu F  Liu YY  Zhao CH  You Y  Wang L  Zhang J  Wei B  Ma T  Zhang Q  Zhang Y  Chen R  Song H  Yang Z 《Cell research》2011,21(11):1534-1550
It is of great interest to identify new neurons in the adult human brain, but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial. In the present study, we have described the general configuration of the RMS in adult monkey, fetal human and adult human brains. We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain. The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin, polysialylated neural cell adhesion molecule and βIII-tubulin. Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS, indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ. Interestingly, no neuroblasts are found in the adult human olfactory bulb. Taken together, our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain.  相似文献   

9.
The prairie vole (Microtus ochrogaster) is an important model organism for the study of social behavior, yet our ability to correlate genes and behavior in this species has been limited due to a lack of genetic and genomic resources. Here we report the BAC-based targeted sequencing of behaviorally-relevant genes and flanking regions in the prairie vole. A total of 6.4 Mb of non-redundant or haplotype-specific sequence assemblies were generated that span the partial or complete sequence of 21 behaviorally-relevant genes as well as an additional 55 flanking genes. Estimates of nucleotide diversity from 13 loci based on alignments of 1.7 Mb of haplotype-specific assemblies revealed an average pair-wise heterozygosity (8.4×10(-3)). Comparative analyses of the prairie vole proteins encoded by the behaviorally-relevant genes identified >100 substitutions specific to the prairie vole lineage. Finally, our sequencing data indicate that a duplication of the prairie vole AVPR1A locus likely originated from a recent segmental duplication spanning a minimum of 105 kb. In summary, the results of our study provide the genomic resources necessary for the molecular and genetic characterization of a high-priority set of candidate genes for regulating social behavior in the prairie vole.  相似文献   

10.
Summary The weight-specific oxygen consumption ( ) of prairie voles caught in winter is 24% higher at 27.5° C and 29% higher at 7.5° C than that of summer animals, thus affording a higher weight-specific thermogenesis in winter than in summer which may allow tolerance to lower thermal exposures. Coincident with the increase in weight-specific rates of oxygen consumption is a decrease in body weight. When total energetic cost to maintain an animal per unit time is calculated, the cost at 27.5° C is the same for both summer and winter animals. Further, the cost to maintain an animal at 7.5° C is less in winter than in summer. Arguments are presented suggesting that prairie voles compensate for increased weight-specific thermogenesis in winter by lowering body weight. The responses to thermal acclimation are quite different in summer and winter animals, thus implying different sorts of metabolic organization. Acclimation to 5° C effects a 26% increase in at 27.5° C of winter voles, and acclimation to 30° C does not change . In contrast, at 27.5° C of summer animals is unaffected by 5° C acclimation, and depressed 20% by 30° C acclimation. Thus, the animals are capable of considerable physiological adjustment to varying thermal conditions in different seasons.  相似文献   

11.
The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation.  相似文献   

12.
13.
Since mating is seldom observed between sibling prairie voles, Microtus ochrogaster, this, behavioural discrimination was used to investigate sibling recognition in this species. Cross-fostering of 1–3-day-old pups demonstrated that unrelated pups reared together did not breed, whereas siblings reared apart bred readily when paired at weaning. When unrelated voles were paired at 14 days of age, prior to sexual maturity, significantly fewer pairs bred than when strangers were paired at 21 days of age. Separation of 21-day-old siblings for 8 days before pairing overcame incest avoidance; a 15-day separation was required for breeding by siblings that had remained together until they were 50 days old. These results indicate that sibling recognition and, consequently, incest avoidance depend on association prior to weaning.  相似文献   

14.
Vertebrate herbivores as diverse as ungulates, geese, and rabbits preferentially feed on plants that have previously experienced herbivory. Here, we ask whether smaller grassland “cryptic consumers” such as voles (Microtus ochrogaster and M. pennsylvanicus) preferentially clip (cut stems for access to leaves or seeds) or avoid previously clipped individuals of two tallgrass prairie species (Desmanthus illinoensis and Echinacea purpurea) within a growing season. Further, we ask how these plants respond to repeated clipping within a growing season, and whether the effects of this herbivory last into the subsequent growing season. Voles preferentially clipped stems of D. illinoensis and E. purpurea plants that had been previously clipped. The exception was indiscriminant clipping of stems of E. purpurea late in the growing season when its achenes, a favorite vole food, ripened. For D. illinoensis, repeated clipping resulted in a 59% reduction in biomass, 42% lower ratio of reproductive to vegetative biomass, and 57% fewer seeds produced per plant compared with unclipped plants. These effects lasted into the following growing season in which plants were protected from voles. In contrast, the only effect of repeated clipping for E. purpurea was that the number of achenes per plant was substantially reduced by three episodes of clipping. This effect did not carry over to the next growing season. Such differences in D. illinoensis and E. purpurea response to repeated stem clipping by voles offer insights into how these small rodents can effect major changes in composition and dominance in grassland communities.  相似文献   

15.
橙腹田鼠中延缓性密度依赖效应和种群波动   总被引:1,自引:0,他引:1  
检验了延迟的密度依赖对橙腹田鼠 (Microtusochrogaster)一个波动种群的生存和生殖的影响 ,研究持续了 63个月 ,取样间隔为 3 5天。在研究期间 ,该种群的密度经历了 4次波动 ,每次波动的高峰都在 11月至次年 1月 ,种群数量在冬季下降。生存和生殖都有负面的密度依赖效应 ,最大效应具有 2个月的时滞。种群存活率增长对种群密度最大的正面效应具有 2个月的时滞 ,而对与增加生殖则有 3个月的时滞。内部因素和冬季都可能推延对生殖的密度依赖效应 ,但是本文未能检验这些内部因素的影响。季节性影响看来与对生存的延缓性密度依赖效应无关。负面的延缓性密度依赖效应对生存和生殖的净作用可能在于减少、而不是阻止橙腹田鼠种群波动的幅度  相似文献   

16.
In the brain, specific signaling pathways localized in highly organized regions called niches allow the persistence of a pool of stem and progenitor cells that generate new neurons in adulthood. Much less is known about the spinal cord where a sustained adult neurogenesis is not observed. Moreover, there is scarce information concerning cell proliferation in the adult mammalian spinal cord and virtually none in aging animals or humans. We performed a comparative morphometric and immunofluorescence study of the entire cervical region (C1-C8) in young (5 mo.) and aged (30 mo.) female rats. Serum prolactin (PRL), a neurogenic hormone, was also measured. Gross anatomy showed a significant age-related increase in size of all of the cervical segments. Morphometric analysis of cresyl violet stained segments also showed a significant increase in the area occupied by the gray matter of some cervical segments of aged rats. The most interesting finding was that both the total area occupied by neurons and the number of neurons increased significantly with age, the latter increase ranging from 16% (C6) to 34% (C2). Taking the total number of cervical neurons the age-related increase ranged from 19% (C6) to 51% (C3), C3 being the segment that grew most in length in the aged animals. Some bromodeoxyuridine positive-neuron specific enolase negative (BrdU(+)-NSE(-)) cells were observed and, occasionally, double positive (BrdU(+)-NSE(+)) cells were detected in some cervical segments of both young and aged rats groups. As expected, serum PRL increased markedly with age. We propose that in the cervical spinal cord of female rats, both maturation of pre-existing neuroblasts and/or possible neurogenesis occur during the entire life span, in a process in which PRL may play a role.  相似文献   

17.
In the mammalian brain, adult neurogenesis has been found to occur primarily in the subventricular zone (SVZ) and dentate gyrus of the hippocampus (DG) and to be influenced by both exogenous and endogenous factors. In the present study, we examined the effects of male exposure or social isolation on neurogenesis in adult female prairie voles (Microtus ochrogaster). Newly proliferated cells labeled by a cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), were found in the SVZ and DG, as well as in other brain areas, such as the amygdala, hypothalamus, neocortex, and caudate/putamen. Two days of male exposure significantly increased the number of BrdU-labeled cells in the amygdala and hypothalamus in comparison to social isolation. Three weeks later, group differences in BrdU labeling generally persisted in the amygdala, whereas in the hypothalamus, the male-exposed animals had more BrdU-labeled cells than did the female-exposed animals. In the SVZ, 2 days of social isolation increased the number of BrdU-labeled cells compared to female exposure, but this difference was no longer present 3 weeks later. We have also found that the vast majority of the BrdU-labeled cells contained a neuronal marker, indicating neuronal phenotypes. Finally, group differences in the number of cells undergoing apoptosis were subtle and did not seem to account for the observed differences in BrdU labeling. Together, our data indicate that social environment affects neuron proliferation in a stimulus- and site-specific manner in adult female prairie voles.  相似文献   

18.
In the adult brain, neuroblasts originating in the subventricular zone migrate through the rostral migratory stream to the olfactory bulb. While migrating, neuroblasts undergo progressive differentiation until reaching their final locations and fates. Because molecules involved in migration may also exert differentiating effects on young neurons, the identification of factors that support migration could also shed light on the processes of adult neuroblast differentiation. This is the case for members of the family of semaphorins and of its cognate receptors, the neuropilins. Here, we have evaluated the presence of semaphorin-3A and of its receptor neuropilin-1 along the rostral migratory stream in young and adult mice by using immunocytochemical, histochemical, and in situ hybridization techniques. Our morphological studies show that semaphorin-3A and neuropilin-1 are both mainly expressed on endothelial cells along the rostral migratory stream during postnatal development. Our results suggest that endothelial cells constitute the primary source and target of semaphorin-3A along the rostral migratory stream. Moreover, the present work outlines the potential role of blood vessels on neuroblast migration in the postnatal rostral migratory stream.  相似文献   

19.
20.
Effects of floods on fish assemblages in an intermittent prairie stream   总被引:2,自引:0,他引:2  
1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long‐term fish assemblage dynamics. 2. We used a 10‐year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north‐eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995–2005) and one perennial downstream flowing site (1997–2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3–5 km of stream between the long‐term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long‐term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date or local habitat characteristics. 5. Fishes rapidly colonised isolated or dry habitats following floods. This was evidenced by the occurrence of fishes in intermittent reaches and the positive association between maximum daily discharge and colonisation events at both headwater sites. 6. Our study suggests floods allow dispersal into intermittent habitats with little or no downstream displacement of fishes. Movement of fishes among habitats during flooding highlights the importance of maintaining connectivity of stream networks of low to medium order prairie streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号