首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hydrogen peroxide (H2O2) is widely regarded as a cytotoxic agent whose levels must be minimized by the action of antioxidant defence enzymes. In fact, H2O2 is poorly reactive in the absence of transition metal ions. Exposure of certain human tissues to H2O2 may be greater than is commonly supposed; levels of H2O2 in the human body may be controlled not only by catabolism but also by excretion, and H2O2 could play a role in the regulation of renal function and as an antibacterial agent in the urine. Cell culture is a widely used method for the investigation of "physiological" processes such as signal transduction and regulation of gene expression, but chemical reactions involving cell culture media are rarely considered. Addition of reducing agents to commonly used cell-culture media can lead to generation of substantial amounts of H2O2. Some or all of the reported effects of ascorbic acid and polyphenolic compounds (e.g., quercetin, catechin, epigallocatechin, epigallocatechin gallate) on cells in culture may be due to H2O2 generation by interaction of these compounds with cell culture media.  相似文献   

4.
Between other parameters, cell migration is partially guided by the mechanical properties of its substrate. Although many experimental works have been developed to understand the effect of substrate mechanical properties on cell migration, accurate 3D cell locomotion models have not been presented yet. In this paper, we present a novel 3D model for cells migration. In the presented model, we assume that a cell follows two main processes: in the first process, it senses its interface with the substrate to determine the migration direction and in the second process, it exerts subsequent forces to move. In the presented model, cell traction forces are considered to depend on cell internal deformation during the sensing step. A random protrusion force is also considered which may change cell migration direction and/or speed. The presented model was applied for many cases of migration of the cells. The obtained results show high agreement with the available experimental and numerical data.  相似文献   

5.
6.
7.
8.
9.
The hypothesis that the direction of chromosome segregation in cell hybrids is determined by the interaction of parent cell cycles, or S-phase times, predicts that the segregant parent will always be the one with the longer cycle, or the longer S phase, and that late replicating chromosomes will be more frequently lost. We have tested this hypothesis by studying cell cycle parameters of mouse, Chinese hamster, and platypus parent cells and by observing chromosome loss and replication patterns in hybrids between them. Two types of hybrids have been studied: mouse-hamster hybrids showed gradual segregation, in one or other direction, of 10-60% chromosomes, while rodent-platypus hybrids (which could be selected under conditions optimal for either parent cell) showed rapid and extreme segregation of platypus chromosomes. We found no correlation between the direction of segregation and the relative lengths of parental cycle times, or phase times, nor between sequence of replication and frequency with which segregant chromosomes are lost. We therefore conclude that the direction and extent of segregation is not directly determined by the interaction of parental cycle or phase times.  相似文献   

10.
Summary The 5′-AMPase activity of the ectoenzyme 5′-nucleotidase has been measured in a variety of cell lines, using intact cells. Human cell types showed two orders of magnitude higher enzyme activity than mouse cell lines. The ectoenzyme is inhibited by adenosine 5′-(α,β-methylene) diphosphate and Concanavalin A. A different extent of 5′-nucleotidase lectin inhibition was observed in the studied cell lines, suggesting that the corresponding ectoenzymes are glycoproteins with a different type or degree, or both, of glycosylation. The 5′-nucleotidase activity increased during subculture and decreased after cell transformation. Generally, the 5′-nucleotidase activity was two-to five-fold higher in monolayer than in suspension cell culture. A relation between cell growth and 5′-AMPase activity was also observed. Enzyme activity increased at the end of the lag phase (glioblastoma cells) or during the exponential phase (the other two cell lines). After confluence, the activity decreased to the initial or even lower range of activity. Observed activity variations with cell proliferation correlate with modifications of 5′-AMPase activity during subculture. This work was supported by grant no. PR84-0359 from the Comisión Asesora de Investigación Científica y Técnica (Spain).  相似文献   

11.
It has been found that both circulating blood cells and tumor cells are more easily adherent to curved microvessels than straight ones. This motivated us to investigate numerically the effect of the curvature of the curved vessel on cell adhesion. In this study, the fluid dynamics was carried out by the lattice Boltzmann method (LBM), and the cell dynamics was governed by the Newton’s law of translation and rotation. The adhesive dynamics model involved the effect of receptor-ligand bonds between circulating cells and endothelial cells (ECs). It is found that the curved vessel would increase the simultaneous bond number, and the probability of cell adhesion is increased consequently. The interaction between traveling cells would also affect the cell adhesion significantly. For two-cell case, the simultaneous bond number of the rear cell is increased significantly, and the curvature of microvessel further enhances the probability of cell adhesion.  相似文献   

12.
13.
14.
15.
Mutations in the DJ-1 gene have been linked to autosomal recessive familial Parkinson's disease. To understand the function of DJ-1, we determined the DJ-1 expression in both zebrafish and post mortem human brains. We found that DJ-1 was expressed early during zebrafish development and throughout adulthood. Knock down (KD) of DJ-1 by injection of morpholino did not cause dramatic morphologic alterations during development, and no loss of dopaminergic neurons was observed in embryos lacking DJ-1. However, DJ-1 KD embryos were more susceptible to programmed cell death. While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos. Interestingly, DJ-1 expression was increased in brains of zebrafish under conditions of oxidative stress, indicating that DJ-1 is a part of stress-responsive machinery. Since oxidative stress is one of the major contributors to the development of Alzheimer's disease (AD), we also examined DJ-1 expression in AD brains. Using DJ-1 specific antibodies, we failed to detect a robust staining of DJ-1 in brain tissues from control subjects. However, DJ-1 immunoreactivity was detected in hippocampal pyramidal neurons and astrocytes of AD brains. Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains.  相似文献   

16.
A recent convergence of data indicating a relationship between cilia and proliferative diseases, such as polycystic kidney disease, has revived the long-standing enigma of the reciprocal regulatory relationship between cilia and the cell cycle. Multiple signaling pathways are localized to cilia in mammalian cells, and some proteins have been shown to act both in the cilium and in cell cycle regulation. Work from the unicellular alga Chlamydomonas is providing novel insights as to how cilia and the cell cycle are coordinately regulated.  相似文献   

17.
The establishment of an in vitro model for cutaneous T cell lymphomas and Sézary syndrome has been difficult since T cells from individuals with these diseases do not proliferate in response to T cell mitogens. We found that conditioned media, collected from mitogen-activated PBMC from Sézary patients, contain an IL-2 receptor inducing factor. Despite their ostensible proliferative disorder, using a combination Sézary cell-conditioned media and rIL-2, we established IL-2 responsive, human T cell lymphotropic virus type I negative T cell lines from 23 patients, nine of which contain cells with the structural and/or genetic characteristics of neoplastic Sézary T cells.  相似文献   

18.
19.
Summary Dissociated single cells from chicken retina or tectum kept in rotation-mediated cell culture aggregate, proliferate and establish a certain degree of histotypical cellto-cell relationships (sorting out), but these systems never form highly laminated aggregates (nonstratified R- and T-aggregates). In contrast, a mixture of retinal plus pigment epithelial cells forms highly stratified aggregates (RPE-aggregates, see Vollmer et al. 1984). The present comparative study of stratified and nonstratified aggregates enables us to investigate the process of cell proliferation uncoupled from that of tissue stratification. Here we try to relate these two basic neurogenetic processes with patterns of expression of cholinesterases (AChE, BChE) during formation of both types of aggregates.During early aggregate formation, in both stratified and nonstratified aggregates an increased butyrylcholinesterase activity is observed close to mitotically active cells. Quantitatively both phenomena show their maxima after 2–3 days in culture. In contrast, AChE-expression in all systems increases with incubation time. In nonproliferative areas, in the center of RPE-aggregates, the formation of plexiform layers is characterized initially by weak BChE and then strong AChE-activity. These areas correspond with the inner (IPL) and outer (OPL) plexiform layers of the retina in vivo. Although by sucrose gradient centrifugation we find that the 6S- and the fiber-associated 11S-molecules of AChE are present in all types of aggregates, during the culture period the ratio of 11S/6S-forms increases only in RPE-aggregates, which again indicates the advanced degree of differentiation within these aggregates.It is thus demonstrated that cholinesterases first correlate with neuronal cell proliferation and later with stratification, which indicates functions of both enzymes during both developmental periods.Abbreviations AChE acetylcholinesterase - BChE butyrylcholinesterase - iso-OMPA specific inhibitor of BChE - BW 284C51 specific inhibitor of AChE - IPL inner plexiform layer - OPL outer plexiform layer  相似文献   

20.
Classical cadherins play a crucial role in establishing intercellular adhesion, regulating cortical tension, and maintaining mechanical coupling between cells. The mechanosensitive regulation of intercellular adhesion strengthening depends on the recruitment of adhesion complexes at adhesion sites and their anchoring to the actin cytoskeleton. Thus, the molecular mechanisms coupling cadherin-associated complexes to the actin cytoskeleton are actively being studied, with a particular focus on α-catenin and vinculin. We have recently addressed the role of these proteins by analyzing the consequences of their depletion and the expression of α-catenin mutants in the formation and strengthening of cadherin-mediated adhesions. We have used the dual pipette assay to measure the forces required to separate cell doublets formed in suspension. In this commentary, we briefly summarize the current knowledge on the role of α-catenin and vinculin in cadherin-actin cytoskeletal interactions. These data shed light on the tension-dependent contribution of α-catenin and vinculin in a mechanoresponsive complex that promotes the connection between cadherin and the actin cytoskeleton and their requirement in the development of adhesion strengthening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号