首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long noncoding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). We previously demonstrated that a novel lncRNA, lnc-ABCA12-3, was overexpressed in ESCC tissues. However, the exact function of lnc-ABCA12-3 is unknown. In the current study, we aimed to evaluate the expression of lnc-ABCA12-3 in ESCC and to explore the potential mechanism of lnc-ABCA12-3 in cell migration, invasion, and proliferation. We showed that lnc-ABCA12-3 was upregulated in ESCC tumor tissues and cell lines. The increased expression of lnc-ABCA12-3 was positively associated with advanced tumor-node-metastasis stages and poor prognosis. The knockdown of lnc-ABCA12-3 inhibited the cell migration, invasion, and proliferation abilities of KYSE-510 and Eca-109 cells. We also found that fibronectin 1 (FN1) was upregulated in ESCC tumor tissues. The expression of FN1 messenger RNA was positively correlated with the expression of lnc-ABCA12-3 in ESCC tumor tissues. After lnc-ABCA12-3 knockdown, the expression of FN1 was downregulated. In addition, the overexpression of FN1 restored the abilities of cell migration, invasion and proliferation in Eca-109 cells. Further studies indicated that lnc-ABCA12-3 acted as a competing endogenous RNA for miR-200b-3p to regulate FN1 expression. In conclusion, these results suggest that lnc-ABCA12-3 is a novel oncogene in tumorigenesis and that its high expression is related to a poor prognosis for patients with ESCC. lnc-ABCA12-3 promotes cell migration, invasion, and proliferation via the regulation of FN1 in ESCC. Our data suggest that lnc-ABCA12-3 might serve as a potential prognostic biomarker and therapeutic target for ESCC.  相似文献   

2.
3.
4.
The long intergenic noncoding RNA, regulator of reprogramming (linc-ROR) has been reported to participate in tumorigenesis, while its functions and fundamental mechanisms in esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, gain-of-function assays showed that linc-ROR upregulation enhanced cell viability, promoted cell proliferation, and inhibited apoptosis. Mechanistically, the regulatory network of linc-ROR/miR-204-5p/MDM2 was established with bioinformatics analysis and online databases, then validated via dual-luciferase reporter assays, RNA immunoprecipitation assays in ESCC cells. Linc-ROR positively regulates the expression of MDM2 as a molecular sponge of miR-204-5p. Moreover, results of western blot and coimmunoprecipitation indicated that linc-ROR overexpression enhanced the ubiquitination level of p53, and its downstream apoptosis-related genes have showed higher bcl-2 expression, lower bax, and cleaved caspase-3 expressions, while miR-204-5p could counteract with this effect. Finally, small interfering RNAs tailored to linc-ROR were established to further evaluate its effects on ESCC comprehensively. In summary, this study revealed that linc-ROR modulated cell apoptosis and regulated p53 ubiquitination via targeting miR-204-5p/MDM2 axis, which provides a novel therapeutic insight into treatments for ESCC.  相似文献   

5.
Esophageal cancer is one of the most common cancers worldwide with a poor prognosis. MicroRNAs(miRNAs) are a class of naturally occurring small noncoding RNAs and play an important role in cancer initiation and development. In this study, we demonstrate that the expression levels of miR-143 and miR-145 were significantly decreased in ESCC tissues in comparison with adjacent normal esophageal squamous tissues(NESTs). Furthermore, an inverse correlation between miR-143 and tumor invasion depth and lymph node metastasis was observed. The enforced expression of miR-143 induced growth suppression and apoptosis of ESCC cells. Rescue of miR-143 significantly suppressed the ESCC cells migration and invasion capabilities. Moreover, we show that functions of miR-143 in ESCC are mediated at least in part by the inhibition of extracellular signal regulated kinase-5(ERK-5) activity. These results prove that miR-143 may act as a tumor suppressor in ESCC.  相似文献   

6.
Autophagy is a kind of intracellular degradation pathway which could be regulated by many noncoding RNAs. ciRS-7, also called CDR1as, is a circular RNA that is relatively well studied at present. In our recent study, we have found that the expression of ciRS-7 is abnormally increased in the esophageal squamous cell carcinoma (ESCC), and may function as an oncogene to accelerate ESCC progression through sponging miR-876-5p. Meanwhile, another study showed that ciRS-7 is highly expressed in the triple-negative breast cancer (TNBC) and may function as a competing endogenous RNA of miR-1299 to maintain the high migration and invasive capacity of TNBC cells. Of interest, in the present work, we observed that ciRS-7 could inhibit starvation or rapamycin-induced autophagy of ESCC cells and miR-1299 promotes starvation or rapamycin-induced autophagy of ESCC cells. Mechanically, miR-1299 could directly bind to the 3′-untranslated region of epidermal growth factor receptor (EGFR) and then affects its downstream Akt-mTOR pathway in ESCC cells. Consistent with our past findings, ciRS-7 could also sponge miR-1299 in ESCC cells. Taken together, this study has shed light on that circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling.  相似文献   

7.
Esophageal squamous cell carcinoma (ESCC) is the leading pathologic type in China. miR-145 has been reported to be downregulated in multiple tumors. This study was aimed to investigate the role of miR-145 in ESCC. miR-145 expression was investigated in 65 ESCC samples as well as four ESCC cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Targetscan 6.2 website ( http://www.targetscan.org/ ) was used to predict the targets of miR-145. Expression of phospholipase C epsilon 1 (PLCE1) messenger RNA and protein was detected by qRT-PCR or Western blot. MTT and wound healing assay were conducted to explore the effects of miR-145 on the proliferation and migration of ESCC cell lines, respectively. miR-145 was significantly decreased in ESCC tissues. An inverse correlation between miR-145 and invasion depth and TNM stage were observed. PLCE1 was a direct target of miR-145, and the expression of PLCE1 was inversely correlated with miR-145 expression in ESCC tissues. In addition, overexpression of miR-145 suppressed cell proliferation and migration in ESCC cells. The enforced expression of PLCE1 partially reversed the suppressive effect of miR-145. These results prove that miR-145 may perform as a tumor suppressor in ESCC by targeting PLCE1.  相似文献   

8.
Esophageal squamous cell carcinoma (ESCC) causes aggressive and lethal malignancies with extremely poor prognoses, and accounts for about 90% of cases of esophageal cancer. Neuropilin and tolloid-like 2 (NETO2) protein coding genes have been associated with various human cancers. Nevertheless, little information is reported about the phenotypic expression and its clinical significance in ESCC progression. Here, our study found that NETO2 expression in ESCC patients was associated with tumor clinical stage and lymph node metastasis status. Gain-of-function and loss-of-function analyses showed that NETO2 stimulated ESCC cell proliferation while suppressing apoptosis in vitro and enhanced tumor growth in vivo. Moreover, knockdown of NETO2 significantly inhibited migration and invasion in combination with regulation of epithelial-mesenchymal transition (EMT) related markers. Mechanistically, overexpression of NETO2 increased the phosphorylation of ERK, PI3k/AKT, and Nuclear factor erythroid-2-related factor 2(Nrf2), whereas silencing NETO2 decreased the phosphorylation of these targets. Our data suggest that Nrf2 was a critical downstream event responsible for triggering the PI3K/AKT and ERK signaling pathways and plays a crucial role in NETO2-mediated tumorigenesis. Taken together, NETO2 acts as an oncogene and might serve as a novel therapeutic target or prognostic biomarker in ESCC patients.  相似文献   

9.
Esophageal squamous cell carcinoma (ESCC) is the eighth most prevalent cancer and the sixth leading cause for cancer-associated mortality. MicroRNAs (miRNAs) are increasingly reported to exert important regulatory functions in human cancers by regulating certain gene expression. miR-488-3p has been identified to be a tumor suppressor in multiple cancers, but its role in ESCC is yet to be investigated. The present study aimed to uncover the biological role and modulatory mechanism of miR-488-3p in ESCC. We first revealed the downregulation of miR-488-3p in ESCC tissues and cell lines. Gain-of-function assays confirmed that miR-488-3p overexpression abrogated proliferation and accelerated apoptosis. Mechanistically, we identified via bioinformatics tool and confirmed that zinc finger and BTB domain containing 2 (ZBTB2) was a target for miR-488-3p. Moreover, miR-488-3p activated the p53 pathway through suppressing ZBTB2. Finally, rescue assays proved that ZBTB2 was involved in the regulation of miR-488-3p on proliferation and apoptosis in ESCC. Additionally, we verified that miR-488-3p had alternate targets in ESCC by confirming the involvement of protein kinase, DNA-activated, catalytic subunit (PRKDC), a known target for miR-488-3p, in miR-488-3p-mediated regulation on ESCC. In sum, this study revealed that miR-488-3p inhibited proliferation and induced apoptosis by targeting ZBTB2 and activating p53 pathway in esophageal squamous cell carcinoma, providing a novel biological target for ESCC.  相似文献   

10.
11.
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in China, but the underlying molecular mechanism of ESCC is still unclear. Involvement of microRNAs has been demonstrated in cancer initiation and progression. Despite the reported function of miR-503 in several human cancers, its detailed anti-oncogenic role and clinical significance in ESCC remain undefined. In this study, we examined miR-503 expression by qPCR and found the downregulation of miR-503 expression in ESCC tissue relative to adjacent normal tissues. Further investigation in the effect of miR-503 on ESCC cell proliferation, migration, and invasion showed that enhanced expression of miR-503 inhibited ESCC aggressive phenotype and overexpression of CCND1 reversed the effect of miR-503-mediated ESCC cell aggressive phenotype. Our study further identified CCND1 as the target gene of miR-503. Thus, miR-503 functions as a tumor suppressor and has an important role in ESCC by targeting CCND1.  相似文献   

12.
Mounting data have shown that long non-coding RNAs (lncRNAs) widely participate in tumour initiation, development, progression and glycolysis in a variety of tumours. However, the clinical prognosis and molecular mechanisms of TMEM161B-AS1 in oesophageal squamous cell carcinoma (ESCC) remain still unknown. Here, TMEM161B-AS1 and HIF1AN were significantly lower in ESCC tissues than in normal samples, and their low expressions were both related to TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Functionally, TMEM161B-AS1 overexpression or miR-23a-3p depletion suppressed the proliferation, invasion and glycolysis as well as reduced glucose consumption and lactate production in ESCC cells. Mechanistically, TMEM161B-AS1 manipulated HIF1AN expression by competitively sponging miR-23a-3p in ESCC cells. MiR-23a-3p mimic and HIF1AN siRNA partly reversed cell phenotypes mediated by TMEM161B-AS1 in ESCC cells. Collectively, TMEM161B-AS1, miR-23a-3p and HIF1AN may be tightly involved in ESCC development and progression as well as patients’ prognosis, and TMEM161B-AS1/miR-23a-3p/HIF1AN signal axis may be a promising target for the treatment of ESCC patients.  相似文献   

13.
Although increasing long noncoding RNAs (lncRNAs) have been identified by high-throughput sequencing, their functions in human cancer remain largely unknown. The function of lncRNA miR143HG has not been explored before. In the present study, we found that miR143HG expression was significantly downregulated in bladder cancer tissues (BCa) compared with normal tissues. We showed that miR143HG high expression was associated with a high survival rate in BCa patients. Gain-of-function assays demonstrated that miR143HG overexpression suppressed the proliferation, arrested cell cycle progression, and attenuated migration and invasion of BCa cells in vitro. In vivo assay illustrated that ectopic expression of miR143HG inhibited BCa growth in vivo. Mechanistically, miR143HG was identified to inhibit the level of miR-1275, whereas miR-1275 directly targeted AXIN2, a negative regulator of the Wnt/β-catenin pathway. Restoration of miR-1275 or knockdown of AXIN2 significantly rescued the proliferation, migration, and invasion abilities of BCa cells. In summary, our findings demonstrated that miR143HG/miR-1275/AXIN2 axis regulates BCa development by modulating the Wnt/β-catenin pathway.  相似文献   

14.
15.
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) regulate gene expression or activities. This study investigated the role of lncRNA LINC00551 in ESCC development and progression. Three paired ESCC and normal tissues were subjected to next‐generation sequencing and we identified 82 upregulated and 60 downregulated lncRNAs, including LINC00551, which was confirmed to markedly downregulated in 78 ESCC tissues and in the Gene Expression Profiling Interactive Analysis data set. Downregulated LINC00551 expression was associated with lymph node metastasis, advanced TNM stage, and tumor size. Moreover, downregulated LINC00551 expression was also associated with poor progression‐free survival and overall survival of ESCC patients. In vitro and in vivo, LINC00551 overexpression inhibited ESCC cell proliferation and invasion, whereas knockdown of LINC00551 expression promoted ESCC cell proliferation and invasion. RNA pull‐down and mass spectrometry assays identified the potential LINC00551 binding proteins, and HSP27 was a promising LINC00551 targeting proteins after RNA immunoprecipitation assay. At the protein level, LINC00551 bound to and decreased HSP27 phosphorylation, and in turn, downregulated ESCC cell proliferation and invasion. The current study demonstrated the functional significance of LINC00551 in ESCC development, progression, and prognosis. Further study will assess LINC00551 as a novel prognostic marker or therapeutic target for ESCC.  相似文献   

16.
Esophageal squamous cell carcinoma (ESCC) is the most prevalent type in esophageal cancers. Despite accumulating achievements in treatments of ESCC, patients still suffer from recurrence because of the treatment failures, one of the reasons for which is radioresistance. Therefore, it is a necessity to explore the molecular mechanism underlying ESCC radioresistance. Long intergenic noncoding RNA 473 (LINC00473) has been reported to be aberrantly expressed in several human malignancies. However, its biological function in radiosensitivity of ESCC remains to be fully understood. This study explored the role of LINC00473 in radiosensitivity of ESCC cells and whether LINC00473 acted as a competing endogenous RNA to realize its modulation on radioresistance. We found that LINC00473 was markedly upregulated in ESCC tissues and cell lines, and its expression was remarkably related to cellular response to irradiation. In addition, knockdown of LINC00473 could sensitize ESCC cells to radiation in vitro. As for the underlying mechanism, we uncovered that there was a mutual inhibition between LINC00473 and miR-374a-5p. Spindlin1 (SPIN1) was verified as a downstream target of miR-374a-5p, and LINC00473 upregulated SPIN1 expression through negatively modulating miR-374a-5p expression. Furthermore, we revealed that SPIN1 could aggravate the radioresistance of ESCC cells. Finally, overexpression of SPIN1 reversed the LINC00473 silencing-enhanced radiosensitivity in ESCC cells. To sum up, we demonstrated that LINC00473 facilitated radioresistance by regulating the miR-374a-5p/SPIN1 axis in ESCC.  相似文献   

17.
Esophageal cancer is one of the most lethal malignancies worldwide, and esophageal squamous cell carcinoma (ESCC) is the dominant histological type. However, the long noncoding RNA (lncRNA) alterations in ESCC have not been elucidated to date. In this study, reliable databases from Gene Expression Omnibus (GEO), which analyzed lncRNA expression in ESCC tumor tissues and adjacent normal tissues were searched, and common differentially expressed lncRNAs and genes were analyzed. Next, cis- trans analysis was performed to predict the underlying relationships between altered lncRNAs and mRNAs, and the lncRNA-mRNA regulatory network was established. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of altered lncRNA-related genes were performed. The promising lncRNA HCG22 was validated by quantitative polymerase chain reaction (qPCR), and clinicopathological data were collected to identify the relationship between lncRNA HCG22 expression level and clinical features. Finally, Transwell assays were performed to explore the biological functions of lncRNA HCG22 in ESCC cells. Two hundred forty-one lncRNAs and 835 mRNAs were observed to be remarkably altered between ESCC tumor tissues and adjacent normal tissues. The lncRNA-mRNA regulatory network showed the coexpression association between lncRNA HCG22 and SPINK7 and ADAMTS12. GO and KEGG analyses showed that HCG22 and ADAMTS12 had potential biological functions in the cell migration of ESCC. The downregulation of lncRNA HCG22 in ESCC tumor tissues was validated by qPCR, and the clinicopathological data showed a noticeable correlation between lncRNA HCG22 expression level and the ESCC differentiational degree and clinical TNM stage. Kaplan-Meier analysis showed that patients with ESCC having low lncRNA HCG22 expression in ESCC tissues had considerably shorter overall survival compared with patients with ESCC having high lncRNA HCG22 expression. Following Transwell assays confirmed the migratory role of lncRNA HCG22 in ESCC cells. In conclusion, lncRNA HCG22 was downregulated in ESCC tissues and can be a migration inhibitor of ESCC cells, and SPINK7 and ADAMTS12 are promising to be the regulatory targets of lncRNA HCG22.  相似文献   

18.
19.
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.  相似文献   

20.
Tongue squamous cell carcinoma (TSCC) is the most common type of oral cancer and is an aggressive head and neck malignancy. Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play important roles in diverse biological cell processes, such as cell development, fate decisions, cell differentiation, cell migration, and invasion. In our study, we showed that long noncoding RNA colorectal neoplasia differentially expressed (CRNDE) expression was upregulated in TSCC cell lines and tissues. Overexpression of CRNDE increased the TSCC cell proliferation, cell cycle, and cell invasion. Moreover, ectopic expression of CRNDE inhibited the miR-384 expression in the SCC1 cell and increased the Kirsten Ras (KRAS), cell division cycle 42, and insulin receptor substrate 1 expression, which were the direct target genes of miR-384. We demonstrated that the miR-384 expression was downregulated in the TSCC samples compared with the paired adjacent nontumor samples. The expression of CRNDE was negatively correlated with the expression of miR-384 in the TSCC samples. Overexpression of miR-384 suppressed TSCC cell proliferation, cell cycle, and invasion. Furthermore, we demonstrated that CRNDE promoted TSCC cell proliferation and invasion through inhibiting miR-384 expression. These results suggested that CRNDE acts as an oncogene in the development of TSCC, which partially occurs through inhibiting miR-384 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号