首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The phylogeny based on the homeodomain (HD) amino acid sequence of the WOX (WUSCHEL-related homeobox gene family) was established in the 3 major radiations of the Poaceae family: Pooideae (Brachypodium distachyon), Bambusoideae (Oryza sativa), and Panicoideae (Zea mays). The genomes of all 3 grasses contain an ancient duplication in the WOX3 branch, and the cellular expression patterns in maize and rice indicate subfunctionalization of paralogues during leaf development, which may relate to the architecture of the grass leaf and the encircling of the stem. The use of maize WOX gene family members as molecular markers in maize embryo development for the first time allowed us to visualize cellular decisions in the maize proembryo, including specification of the shoot/root axis at an oblique angle to the apical-basal polarity of the zygote. All molecular marker data are compatible with the conclusion that the embryonic shoot/root axis comprises a discrete domain from early proembryo stages onward. Novel cell fates of the shoot and the root are acquired within this distinct morphogenic axis domain, which elongates and thus separates the shoot apical meristem and root apical meristem (RAM) anlagen in the maize embryo.  相似文献   

4.
5.
6.
7.
8.
9.
Background and Aims During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. Methods Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. Key Results Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. Conclusions The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.  相似文献   

10.
李晓旭  刘成  李伟  张增林  高晓明  周慧  郭永峰 《遗传》2016,38(5):444-460
WUSCHEL相关的同源异型盒(WUSCHEL-related homeobox,WOX)是一类植物特异的转录因子家族,具有调控植物干细胞分裂分化动态平衡等重要功能。本研究利用番茄(Solanum lycopersicum)基因组数据,通过建立隐马尔科夫模型并进行检索,鉴定了番茄10个WOX转录因子家族成员。多序列比对发现,番茄WOX转录因子家族成员具有高度保守的同源异型结构域;以拟南芥WOX转录因子家族成员序列为参照,通过邻接法、极大似然法、贝叶斯法重建了系统发育树,三者呈现出类似的拓扑结构,番茄和拟南芥WOX转录因子家族共25个成员被分为3个进化支(Clade)和9个亚家族(Subgroup);利用MEME和GSDS对WOX转录因子家族成员的蛋白保守结构域和基因结构进行了分析,同一亚家族内的WOX转录因子家族成员的保守结构域的种类、组织形式以及基因结构具有高度的一致性;利用Perl和Orthomcl对家族成员的染色体定位和同源性关系进行分析,结果表明串联重复的SlWOX3a和SlWOX3b可能来源于一次复制事件;利用番茄转录组数据和qRT-PCR进行表达分析,结果显示家族成员在不同组织中的表达存在差异,暗示了WOX家族的不同成员在功能上可能具有多样性。本研究对番茄WOX转录因子家族成员进行GO(Gene Ontology)注释和比较分析,结果表明该家族成员作为转录因子,可能在组织器官发育、细胞间通讯等过程中发挥作用。  相似文献   

11.
12.
13.
14.
Members of the class 1 knotted-like homeobox (KNOX) gene family are important regulators of shoot apical meristem development in angiosperms. To determine whether they function similarly in seedless plants, three KNOX genes (two class 1 genes and one class 2 gene) from the fern Ceratopteris richardii were characterized. Expression of both class 1 genes was detected in the shoot apical cell, leaf primordia, marginal part of the leaves, and vascular bundles by in situ hybridization, a pattern that closely resembles that of class 1 KNOX genes in angiosperms with compound leaves. The fern class 2 gene was expressed in all sporophyte tissues examined, which is characteristic of class 2 gene expression in angiosperms. All three CRKNOX genes were not detected in gametophyte tissues by RNA gel blot analysis. Arabidopsis plants overexpressing the fern class 1 genes resembled plants that overexpress seed plant class 1 KNOX genes in leaf morphology. Ectopic expression of the class 2 gene in Arabidopsis did not result in any unusual phenotypes. Taken together with phylogenetic analysis, our results suggest that (a) the class 1 and 2 KNOX genes diverged prior to the divergence of fern and seed plant lineages, (b) the class 1 KNOX genes function similarly in seed plant and fern sporophyte meristem development despite their differences in structure, (c) KNOX gene expression is not required for the development of the fern gametophyte, and (d) the sporophyte and gametophyte meristems of ferns are not regulated by the same developmental mechanisms at the molecular level.  相似文献   

15.
Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz., ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semi-quantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds.  相似文献   

16.
17.
WOX蛋白家族调控干细胞发育分子机制的研究进展   总被引:1,自引:0,他引:1  
于燕杰  张大兵  袁政 《植物学报》2016,51(4):565-574
WOX蛋白家族是植物特有的一类转录因子家族, 是植物胚胎建成、干细胞维持和器官发生等发育过程中的重要调控因子。越来越多的研究表明, 作为干细胞维持的关键因子之一, WOX蛋白家族通过相似或特异的调控网络参与植物初生分生组织(茎尖和根尖分生组织)和次生分生组织(维管分生组织)等各级干细胞的维持和分化。该文综述了近年来WOX蛋白家族调控干细胞发育分子机制的研究进展, 并对其在单、双子叶植物中功能的保守性进行了比较和分析。  相似文献   

18.
Zhang S  Wong L  Meng L  Lemaux PG 《Planta》2002,215(2):191-194
Expression of knotted1 ( kn1) and ZmLEC1, a maize homologue of the Arabidopsis LEAFY COTYLEDON1 ( LEC1) was studied using in situ hybridization during in vitro somatic embryogenesis of maize ( Zea mays L.) genotype Hi-II. Expression of kn1 was initially detected in a small group of cells (5-10) in the somatic embryo proper at the globular stage, in a specific region where the shoot meristem is initiating at the scutellar stage, and specifically in the shoot meristem at the coleoptilar stage. Expression of ZmLEC1 was strongly detected in the entire somatic embryo proper at the globular stage, gradually less in the differentiating scutellum at the scutellar and coleoptilar stages. The results of analyses show that the expression pattern of kn1 during in vitro somatic embryogenesis of maize is similar to that of kn1 observed during zygotic embryo development in maize. The expression pattern of ZmLEC1 in maize during in vitro development is similar to that of LEC1 in Arabidopsis during zygotic embryo development. These observations indicate that in vitro somatic embryogenesis likely proceeds through similar developmental pathways as zygotic embryo development, after somatic cells acquire competence to form embryos. In addition, based on the ZmLEC1 expression pattern, we suggest that expression of ZmLEC1 can be used as a reliable molecular marker for detecting early-stage in vitro somatic embryogenesis in maize.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号