首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Binding of azide to a series of copper(II) complexes has been investigated by absorption, CD and EPR spectroscopy. Axial binding of azide to Cu(II) can be differentiated from equatorial binding through the lower intensity and lack of optical activity of the LMCT band. The affinity of azide for Cu(II) increases with the overall positive charge of the complex. The preliminary data on thiocyanate binding to Cu(II) seem to agree with the trends observed for the corresponding azide adducts.  相似文献   

2.
The type-2 depleted form of ascorbate oxidase from zucchini has been prepared in crystals and characterised by X-ray crystallography and EPR spectroscopy. The X-ray structure analysis by difference-Fourier techniques and refinement shows that, on average, about 1.3 Cu atoms/ascorbate oxidase monomer are removed. The copper is lost from the trinuclear site whereby the EPR-active type-2 copper is depleted most; type-1 copper is not affected. This observation indicates preferential formation of a 1 Cu-depleted form with the hole equally distributed over all three copper sites. Each of these 1 Cu-depleted species may represent an anti-ferromagnetically coupled copper pair which is EPR-silent and could explain the disappearance of the type-2 EPR signal.  相似文献   

3.
The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.  相似文献   

4.
Further study has been made of metal-catalyzed oxidation (MCO) reactions and mass spectrometry as a method to determine the binding site of copper in metalloproteins. The role of ascorbate and a variety of oxidizing agents, including O2, H2O2, and S2O8(2-), have been investigated using Cu/Zn superoxide dismutase (SOD) as a model system. Ascorbate is found to play two competing roles in the MCO reactions. It reduces Cu(II), which initiates and maintains the generation of reactive oxygen species, and it scavenges radicals, which helps to localize oxidation products to amino acids near the metal center. An ascorbate concentration of 100 mM is found to be optimal with regard to localizing oxidation products to only the Cu-binding residues (His44, His46, His61, and His118) of Cu/Zn SOD. This concentration of ascorbate is very similar to the optimum concentration found in our previous studies of different Cu-binding proteins. Another notable result from this study is the observation that S2O8(2-) is more effective as an oxidant than O2 or H2O2 in the MCO reactions. Because S2O8(2-) is more stable in solution than H2O2, using it as an oxidizing agent results in much less nonspecific oxidation to the protein. The overall results of this study suggest that general MCO reaction conditions may exist for determining the metal-binding site of a wide range of Cu-binding proteins.  相似文献   

5.
Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase’s type 1 copper site and substrate.  相似文献   

6.
The isolation and purification, by preparative electrofocusing, of the major anionic (ZPOA) and cationic (ZPOC) isoenzymes, collected from young zucchini squash, are reported. The M r and sugar content are similar to those found previously for the major isoenzymes from the ripe fruits and in the range commonly observed for plant peroxidases. The amount of the two cationic enzymes was very low compared with that of anionic ZPOA. The anionic enzyme has been characterized by electronic, circular dichroism, proton NMR and electron paramagnetic resonance spectroscopy. The spectra are qualitatively similar to those of the corresponding anionic horseradish peroxidase (HRPA) derivatives, with minor differences attributable to the particular protein environment around the heme. The kinetics of the enzymatic oxidation of a series of phenols by H2O2 have been studied. ZPOA shows a parallel behavior to HRPA, but it is systematically more active than HRPA, indicating that the zucchini enzymes have a marked tendency to carry out oxidation of this type of compounds.  相似文献   

7.
Ceruloplasmin is a multi-copper oxidase, which contains most of the copper present in the plasma. It is an acute-phase reactant that exhibits a two- to three-fold increase over the normal concentration of 300?μg/ml in adult plasma. However, the precise physiological role(s) of ceruloplasmin has been the subject of intensive debate and it is likely that the enzyme has a multi-functional role, including iron oxidase activity and the oxidation of biogenic amines. The three-dimensional X-ray structure of the human enzyme was elucidated in 1996 and showed that the molecule was composed of six cupredoxin-type domains arranged in a triangular array. There are six integral copper atoms per molecule (mononuclear sites in domains 2, 4 and 6 and a trinuclear site between domains 1 and 6) and two labile sites with roughly 50% occupancy. Further structural studies on the binding of metal cations by the enzyme indicated a putative mechanism for ferroxidase activity. In this paper we report medium-resolution X-ray studies (3.0–3.5?Å) which locate the binding sites for an inhibitor (azide) and various substrates [aromatic diamines, biogenic amines and (+)-lysergic acid diethylamide, LSD]. The binding site of the azide moiety is topologically equivalent to one of the sites reported for ascorbate oxidase. However, there are two distinct binding sites for amine substrates: aromatic diamines bind on the bottom of domain 4 remote from the mononuclear copper site, whereas the biogenic amine series typified by serotonin, epinephrine and dopa bind in close vicinity to that utilised by cations in domain 6 and close to the mononuclear copper. These binding sites are discussed in terms of possible oxidative mechanisms. The binding site for LSD is also reported.  相似文献   

8.
9.
Ferulic acid (FA) is a biologically active compound used as an additive in the food industry, and possesses a wide range of therapeutic effects for treating different health problems. The interaction between FA and bovine xanthine oxidase (XOD) has been investigated by means of fluorescence spectroscopy methods. The numbers of binding sites and the binding constants were estimated at various temperatures and the results indicated the existence of one specific FA binding site of XOD. Detailed information on the interaction between molecules gathered after performing in silico molecular docking indicated the accommodation of the FA molecule in a XOD binding pocket, in close vicinity to the active site residues. The formation of the XOD–FA complex causes the quenching of protein fluorescence. The process followed a static mechanism at lower temperatures, and a dynamic mechanism at higher temperatures. The thermodynamic parameters calculated on the basis of different temperatures revealed that the association between FA and XOD is a spontaneous process driven by enthalpy and dominated by hydrogen bonding and van der Waals interaction. The results of synchronous fluorescence and 3D fluorescence spectra showed that the conformation of protein was altered in the presence of FA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
酶的固定化作为一种重要的技术,已在生物催化领域得到了广泛的应用。现将来源于普拉特链霉菌3304(Streptomyces platensis NTU3304)产生的胞外L-谷氨酸氧化酶(L-glutamate oxidase,Gox)基因gox融合到来源于粪碱纤维单胞菌Cellulomonas fimi的纤维素结合域(CBDcex)的基因上,构建表达载体p ETM10-Gox-CBD,并在大肠杆菌中表达。通过蛋白纯化获得融合蛋白,并命名为Gox-CBD。利用CBD对微晶纤维素特异性吸附的特性将其固定在微晶纤维素上,并对固定化酶的制备条件、结合量、酶学性质及其微晶纤维素结合稳定性等进行了研究。在4℃条件下结合约1 h,融合蛋白Gox-CBD结合在纤维素上的结合量即可达到9.0 mg/g。通过对重组型、融合表达游离的以及固定化在微晶纤维素上的谷氨酸氧化酶的酶学性质进行比较发现,固定化酶的比酶活有所降低;但固定化酶的热稳定性相对于游离酶有了很大的提高,在60℃孵育30 min后还保留有约70%的活性,而游离的重组Gox在相同条件下几乎完全失去活性。当固定化结合蛋白在p H10或者盐浓度5 mmol/L的Na Cl条件下可以牢固结合。并且可以通过一步纯化方法固定化融合蛋白Gox-CBD于微晶纤维素上。因此,L-谷氨酸氧化酶与纤维素结合域融合表达的研究为蛋白的纯化及酶的固定化提供了一种新策略。  相似文献   

11.
Mononuclear copper(II) complexes of the alloferon 1 His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, alloferon 2 Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, Ac-alloferon 1 Ac-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly and Ac-alloferon 2 Ac-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly have been studied by potentiometric, UV-vis, CD and EPR spectroscopic methods. The potentiometric and spectroscopic data shows that acetylation of the amino terminal group induces significant changes in the coordination properties of the Ac-alloferons 1 and 2 compared to the alloferons 1 and 2, respectively. The presence of four (Ac-alloferon 1) or three (Ac-alloferon 2) histidyl residues provides a high possibility for the formation of macrochelates via the exclusive binding of imidazole-N donor atoms. The macrochelation suppresses, but cannot preclude the deprotonation and metal ion coordination of amide functions and the CuH−3L species with {NIm, 3N} bonding mode at pH above 8 are formed. The N-terminal amino group of the alloferons 1 and 2 takes part in the coordination of the metal ion and the 4N complex with {NH2, 3NIm} coordination mode dominates at physiological pH 7.4 for alloferon 1 and the 3N {NH2, CO, 2NIm} binding mode for alloferon 2. However, at higher pH values sequential amide nitrogens are deprotonated and coordinated to copper(II) ions.  相似文献   

12.
Ozone-inducible proteins (OI2-2 and OI14-3) from Atriplex canescens whose structure and function are unknown are rich in glycine intercepted with histidine and tyrosine with putative signal peptides at the N-terminus. OI2-2 and OI14-3 contain 8 and 10 tandem repeats of YGHGGG, respectively. In order to study whether these proteins bind Cu(2+), circular dichroism (CD), and nuclear magnetic resonance (NMR) were measured for four synthetic peptides corresponding to sections of the sequences of these proteins; 1 (HGGGY), 2 (HGGGYGH), 3 (YGHGGGY), and 4 (YGHGGGYGHGGGY), where all peptides were chemically blocked with an acetyl group at the N-terminus and an -NH(2) group at the C-terminus. Visible CD spectra of the four peptides show positive peaks near 580 and 340nm, which were observed at pH 7.4 but not pH 6.0, indicating clearly that the four peptides bind Cu(2+). The NMR spectra indicate that the addition of small amounts of CuSO(4) to 3 (Y1-G2-H3-G4-G5-G6-Y7) causes significant broadening of resonances of the side chain protons (C(beta)H, C(epsilon1)H, and C(delta2)H) of His3 and the side chain C(beta)H of Tyr1 at pH 7.4. In addition, the backbone C(alpha)H resonances of Gly2 and Gly4 were broadened more strongly than those of Gly5 and Gly6. CD titration experiment suggested that two repeats of YGHGGG comprise the fundamental Cu(2+) binding unit. Thus, the ozone-inducible proteins are capable of binding at least four or five copper ions per protein. These copper-binding proteins would function as active oxygen scavengers.  相似文献   

13.
The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M?1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.  相似文献   

14.
A Cu(II) complex with azide and 4-pyridylacrylic acid (4-Hpya), [Cu2(4-pya)2(N3)2(DMF)2] (1) has been synthesized and characterized crystallographically and spectroscopically. This compound consists of binuclear units in which Cu(II) ions are connected through two equatorial-equatorial end-on azido bridges. The Cu(II) dimers are interlinked by 4-pya to generate two-dimensional coordination polymers. Magnetic investigations revealed a relatively strong ferromagnetic interaction through the azide bridges with J = 145 cm−1, and a weak ferromagnetic interdimer interaction through the long but π-conjugated 4-pya ligands. The magneto-structural correlations have been discussed in comparison with other Cu(II) dimers with the same bridging motif.  相似文献   

15.
Kato N  Esaka M 《Planta》2000,210(6):1018-1022
 When pumpkin (Cucurbita spp., cv. Ebisu Nankin) ascorbate oxidase cDNA was introduced into cultured cells of tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow No. 2) by Agrobacterium-mediated transformation, the transgenic cells expressed and secreted the recombinant pumpkin ascorbate oxidase into the culture medium. These transgenic cells showed no morphological difference from wild-type cells. However, in the presence of applied hormones protoplasts prepared from the transgenic cells elongated more rapidly than those of wild-type cells. We propose that ascorbate oxidase may play a key role in the regulation of cell expansion perhaps by controlling transport processes through the plasma membrane, but not by affecting the cell wall. Received: 28 October 1999 / Accepted: 18 January 2000  相似文献   

16.
Met467, the axial ligand to type I Cu in a multicopper oxidase, Myrothecium verrucaria bilirubin oxidase was substituted with a non-coordinating Phe and Leu to transform the spectral and magnetic properties and oxidase activities of the enzyme into those of fungal laccases, but the mutated type I Cu center showed properties characteristic of phytocyanins, blue copper proteins with an axial coordination of Gln, due to compensatory binding of the distal Asn459 as evidenced by a double mutation.  相似文献   

17.
Bovine cytochromec oxidase usually contains 3–4 mol of tightly bound cardiolipin per cytochromeaa 3 complex. At least two of these cardiolipins are required for full electron transport activity. Without the tightly bound cardiolipin, cytochromec oxidase has only 40–50% of its original activity when assayed in detergents that support activity, e.g., dodecyl maltoside. By measuring the restoration of electron transport activity, functional binding constants for cardiolipin and a number of cardiolipin analogues have been evaluated (K d,app=1 µM for cardiolipin). These binding constants agree reasonably well with direct measurement of the binding using [14C]-acetyl-cardiolipin (K d <0.1 µM) when the enzyme is solubilized with Triton X-100. These data are discussed in relationship to the wealth of data that is known about the association of cardiolipin with cytochromec oxidase and the other mitochrondrial electron transport complexes and transporters.  相似文献   

18.
Copper amine oxidases have a complex reaction cycle that converts a primary amine and molecular oxygen into the aldehyde, ammonia and hydrogen peroxide. Coupling structural studies of freeze-trapped reaction intermediates in crystals with kinetic and spectroscopic experiments in solution has generated a detailed molecular picture of catalysis. Although dioxygen has been directly observed bound to the copper at a late stage in the reaction cycle, whether copper is the initial binding site remains controversial.  相似文献   

19.
Novel classes of fatty acid and retinol binding protein from nematodes   总被引:2,自引:0,他引:2  
Parasitic nematodes have recently been found to produce proteins which represent two new classes of fatty acid and retinoid binding protein. The first is the nematode polyprotein allergens/antigens (NPAs) which, as their name suggests, are synthesised as large polyproteins which are subsequently cleaved at regularly spaced sites to form multiple copies of a fatty acid binding protein of approximately 14.5 kDa. Binding studies using molecular environment-sensitive fluorescent ligands have shown that the binding site is highly unusual, producing blue-shifting in fluorescence to an unprecedented degree, suggesting a remarkably non-polar environment and isolation from solvent water. Computer-based structural predictions and biophysical observations have identified the NPAs as highly helical proteins which might form a four helix bundle, so constitute a new class of lipid binding protein from animals. The second class, like the NPAs, binds both fatty acids and retinol, but with a higher affinity for the latter. These are also highly helical but are structurally distinct from the NPAs. The biological function of these new classes of protein are discussed in the context of both the metabolic requirements of the parasites and the possible role of the proteins in control of the immune and inflammatory environment of the tissue sites parasitised.  相似文献   

20.
Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD. This association step obeys second-order kinetics with an association rate constant k = 7.4 x 10(3) M-1 s-1 at 20 degrees C. FAD binding to the tetrameric binary TPP complex is too fast to be resolved by manual mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号