首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine embryonic stem cells (mESCs) inoculated at passage P13 with the mycoplasma species M. hominis, M. fermentans and M. orale and cultured over 20 passages showed reduced growth rate and viability (P < 0.0001) compared to control mESCs. Spectral karyotypic analysis of mycoplasma-infected mESCs showed a number of non-clonal chromosomal aberrations which increased with the duration of infection. The differentiation status of the infected mESCs was most affected at passage P13+6 where the infection was strongest and 46.3% of the mESCs expressed both POU5F1 and SSEA-1 markers whereas 84.8% of control mESCs expressed both markers. The percentage of germline chimeras from mycoplasma-infected mESCs was examined after blastocyst injection and embryo transfer to suitable recipients at different passages and, compared to the respective control group, was most affected at passage P13+5 (50% vs. 90%; P < 0.07). Further reductions were obtained at the same passage in the percentage of litters born (50% vs. 100%; P < 0.07) and in the percentage of pups born (22% vs. 45%; P < 0.001). Thirty three chimeras (39.8%) obtained from blastocyst injection with mycoplasma-infected mESCs showed reduced body weight (P < 0.0001), nasal discharge, osteoarthropathia, and cachexia. Flow cytometric analysis of plasma from chimeras produced with mycoplasma-infected mESCs revealed statistically significant differences in the proportions of T-cells and increased levels of IgG1 (P < 0.001), IgG2a (P < 0.05) and IgM (P < 0.05), anti-DNA antibodies (P < 0.05) and rheumatoid factor (P < 0.01). The present data indicate that mycoplasma contamination of mESCs affects various cell parameters, germline transmission, and postnatal development of the resulting chimeras.  相似文献   

2.
Continuous expression of Cre recombinase has the potential to yield toxic side effects in various cell types, thereby limiting applications of the Cre/loxP system for conditional mutagenesis. In this study, we investigate the potential of Cre protein transduction to overcome this limitation. COS-7, CV1-5B, and mouse embryonic stem (ES) cells treated with cell-permeant Cre (HTNCre) maintain a normal growth behavior employing Cre concentrations sufficient to induce recombination in more than 90% of the cells, whereas continuous application of high doses resulted in markedly reduced proliferation. HTNCre-treated ES cells maintain a normal karyotype and are still able to contribute to the germline. Moreover, we present an enhanced HTNCre purification protocol that allows the preparation of a concentrated glycerol stock solution, thereby enabling a considerable simplification of the Cre protein transduction procedure. The protocol described here allows rapid and highly efficient conditional mutagenesis of cultured cells.  相似文献   

3.
4.
Developmental potency of primitive and embryonic ectoderm cells from 4.50-day to 6.25-day post-coitum (p.c.)mouse embryos and primordial germ cells from 12.50-day p.c. male genital ridges of fetal mice were studied by direct introducing them into 3.50-day p.c. blastocysts. Sixteen (61.5%) overt chimaeras out of 26(50%) offsprings were obtained after transfer of 52 blastocysts injected with 4.50-day primitive ectoderm cells; four (16.0%) overt chimaeras were obtained out of 25 (51.0%) offsprings with 4.75-day primitive ectoderm cells from 49 transferred blastocysts. However, no overt chimaera was obtained with either 5.25-day or 6.25day embryonic ectoderm cells or 12.50-day male primordial germ cells. GPI analysis of mid-gestation conceptuses developed from injected blastocysts showed that 5.25-day embryonic ectoderm cells could only contributed to yolk sac of conceptus. Results suggested that implantation acts as a trigger for the determination of primitive ectoderm cells, and their developmental potency becomes limited within a short period of time in normal development.  相似文献   

5.
6.
Proteomic analysis of neural differentiation of mouse embryonic stem cells   总被引:4,自引:0,他引:4  
Wang D  Gao L 《Proteomics》2005,5(17):4414-4426
Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca(2+) concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

7.
Feeder cells are usually used in culturing embryonic stem cells (ESCs) to maintain their undifferentiated and pluripotent status. To test whether mouse embryonic stem cells (mESCs) may be a source of feeder cells to support their own growth, 48 fibroblast-like cell lines were isolated from the same mouse embryoid bodies (mEBs) at three phases (10th day, 15th day, 20th day), and five of them, mostly derived from 15th day mEBs, were capable of maintaining mESCs in an undifferentiated and pluripotent state over 10 passages, even up to passage 20. mESCs cultured on the feeder system derived from these five cell lines expressed alkaline phosphatase and specific mESCs markers, including SSEA-1, Oct-4, Nanog, and formed mEBs in vitro and teratomas in vivo. These results suggest that mEB-derived fibroblasts (mEB-dFs) could serve as feeder cells that could sustain the undifferentiated growth and pluripotency of their own mESCs in culture. This study not only provides a novel feeder system for mESCs culture, avoiding a lot of disadvantages of commonly used mouse embryonic fibroblasts as feeder cells, but also indicates that fibroblast-like cells derived from mESCs take on different functions. Investigating the molecular mechanisms of these different functional fibroblast-like cells to act on mESCs will contribute to the understanding of the mechanisms of mESCs self-renewal.  相似文献   

8.
目的 体外建立人胚胎干细胞传代培养方法,研究人胚胎干细胞细胞化学染色特性.方法 以小鼠胚胎成纤维细胞作为饲养层传代培养人胚胎干细胞,检测人胚胎干细胞、自发分化克隆及拟胚体的细胞化学染色特性.结果 人胚胎干细胞在小鼠胚胎成纤维细胞饲养层上传30代以上其形态保持不变;人胚胎十细胞碱性磷酸酶、过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性,自发分化克隆细胞阳性程度明显减弱;人胚胎干细胞形成的拟胚体碱性磷酸酶染色弱阳性,过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性.结论 小鼠胚胎成纤维细胞能支持人胚胎干细胞传代培养,细胞化学染色结果能初步鉴别人胚胎干细胞未分化特性.  相似文献   

9.
目的寻找可以维持人胚胎干细胞未分化生长的人源性细胞作为饲养层细胞,从而解决使用鼠源性细胞作为饲养层带来的安全问题。方法尝试以人脐带间充质干细胞作为饲养层细胞来培养人胚胎干细胞,检验其是否可以维持人胚胎干细胞的未分化生长状态。用胶原酶消化法分离人脐带间充质干细胞,光镜下观察细胞形态;流式细胞仪检测其表面标志;诱导人脐带间充质干细胞向成骨细胞和脂肪细胞进行分化。将人胚胎干细胞系H1接种于丝裂霉素C灭活后的人脐带间充质干细胞上,每隔5d进行一次传代。培养20代后,对人胚胎干细胞特性进行相关检测,包括细胞形态、碱性磷酸酶染色、相关多能性基因的表达、分化能力。结果从人脐带中分离出的间充质干细胞为梭形,呈平行排列生长或漩涡状生长;细胞高表达CD44、CD29、CD73、CD105、CD90、CD86、CD147、CD117,不表达CD14、CD38、CD133、CD34、CD45、HLA-DR;具有分化成脂肪细胞和成骨细胞的潜能。人胚胎干细胞在人脐带间充质干细胞饲养层上培养20代后,继续保持人胚胎干细胞的典型形态,碱性磷酸酶染色为阳性,免疫荧光染色显示OCT4、Nanog、SSEA4、TRA-1-81、TRA-1-60的表达为阳性,SSEA1表达为阴性,体外悬浮培养可以形成拟胚体。结论人脐带间充质干细胞可以作为人胚胎干细胞的饲养层细胞,支持其生长,并维持其未分化生长状态。  相似文献   

10.
11.
Abstract In vitro derivation of oocytes from embryonic stem (ES) cells has the potential to be an important tool for studying oogenesis as well as advancing the field of therapeutic cloning by providing an alternative source of oocytes. Here, we demonstrate a novel, two-step method for inducing mouse ES cells to differentiate into oocyte-like cells using mouse ovarian granulosa cells. First, primordial germ cells (PGCs) were differentiated within the embryonic body (EB) cells around day 4 as defined by the expression of PGC-specific markers and were distinguished from undifferentiated ES cells. Second, day 4 EB cells were co-cultured with ovarian granulosa cells. After 10 days, these cells formed germ cell colonies as indicated by the expression of the two germ cell markers Mvh and SCP3. These cells also expressed the oocyte-specific genes Fig α, GDF-9 , and ZP1-3 but not any testis-specific genes by RT-PCR analysis. EB cultured alone or cultured in granulosa cell-conditioned medium did not express any of these oocyte-specific markers. In addition, EB co-cultured with Chinese hamster ovary (CHO) cells or cultured in CHO cell-conditioned medium did not express all of these oocyte-specific markers. Immunocytochemistry analysis using Mvh and GDF-9 antibodies confirmed that some Mvh and GDF-9 double-positive oocyte-like cells were generated within the germ cell colonies. Our results demonstrate that granulosa cells were effective in inducing the differentiation of ES cell-derived PGCs into oocyte-like cells through direct cell-to-cell contacts. Our method offers a novel in vitro system for studying oogenesis; in particular, for studying the interactions between PGCs and granulosa cells.  相似文献   

12.
13.
Cellular replacement therapy is a potential therapeutic strategy for diabetes. In this study, we investigated the effect of transplantation of induced mouse embryonic stem cells (mESCs) into endoderm and early hepatocyte-like cells in streptozotocin (STZ)-diabetic mice. After embryoid body (EB) formation from mESC, the EBs were cultured in the presence of dexamethasone (DEX) and insulin for 4 days then was added acidic fibroblast growth factor (aFGF), hepatocyte growth factor (HGF) and oncostatin M (OSM) for 10 days, respectively. Blood glucose levels, intraperitoneal glucose tolerance (IGT) test and islet histology were assessed. The result revealed that transplantation of induced mESCs into early hepatocyte-like cells could repair pancreatic islets of control group. Blood glucose levels and intraperitoneal glucose tolerance test were significantly improved in test group compared to control group. Furthermore, there was significant increase in the number of islets in test group compared to control group. The findings declare that induced mESCs into endoderm and early hepatocyte-like cells, are appropriate candidate for regenerative therapy of pancreatic islets in type I diabetes.  相似文献   

14.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

15.
以小鼠胚胎干细胞(ES)为种子细胞,使用改良的4-/4+ RA方案,诱导小鼠ES细胞在丝素材料上向神经细胞分化,探讨丝素材料对其生长、黏附、分化等情况的影响。将小鼠ES细胞悬浮培养4 d得到的拟胚体(EBs)分别接种到经丝素膜和明胶包被的培养皿上进行诱导,比较不同材料上EBs的贴壁率及向神经元分化的比率。结果表明EBs在明胶和柞蚕丝素蛋白膜(TSF)上贴壁较快,平均贴壁率为90.3%和84.4%,在桑蚕丝素蛋白膜(SF)上贴壁较慢,贴壁率低,仅为38.5%,同时三者神经元的分化比率均能达到40%以上,无明显差异。通过以上实验,我们得出,TSF有望成为小鼠ES细胞向神经细胞分化的支架材料。  相似文献   

16.
This study attempted to investigate whether different levels of mitotic activity exist within different physical regions of a human embryonic stem (hES) cell colony. Incorporation of 5-bromo-2-deoxyuridine (BrdU) within newly-synthesized DNA, followed by immunocytochemical staining was used as a means of detecting mitotically-active cells within hES colonies. The results showed rather surprisingly that the highest levels of mitotic activity are primarily concentrated within the central regions of hES colonies, whereas the peripheral regions exhibited reduced levels of cellular proliferation. Two hypothetical mechanisms are therefore proposed for hES colony growth and expansion. Firstly, it is envisaged that the less mitotically-active hES cells at the periphery of the colony are continually migrating outwards, thereby providing space for newly-divided daughter cells within the more mitotically-active central region of the hES colony. Secondly, it is proposed that the newly-divided hES cells within the central region of the colony somehow migrate to the outer periphery. This could possibly explain why the periphery of hES colonies are less mitotically-active, since there would obviously be an extended time-lag before newly-divided daughter cells are ready again for the next cell division. Further investigations need to be carried out to characterize the atypical mechanisms by which hES colonies grow and expand in size.  相似文献   

17.
18.
Gene targeting in embryonic stem (ES) cells remains best practice for introducing complex mutations into the mouse germline. One aspect in this multistep process that has not been streamlined with regard to the logistics and ethics of mouse breeding is the efficiency of germline transmission: the transmission of the ES cell‐derived genome through the germline of chimeras to their offspring. A method whereby male chimeras transmit exclusively the genome of the injected ES cells to their offspring has been developed. The new technology, referred to as goGermline, entails injecting ES cells into blastocysts produced by superovulated homozygous Tsc22d3 floxed females mated with homozygous ROSA26‐Cre males. This cross produces males that are sterile due to a complete cell‐autonomous defect in spermatogenesis. The resulting male chimeras can be sterile but when fertile, they transmit the ES cell‐derived genome to 100% of their offspring. The method was validated extensively and in two laboratories for gene‐targeted ES clones that were derived from the commonly used parental ES cell lines Bruce4, E14, and JM8A3. The complete elimination of the collateral birth of undesired, non‐ES cell‐derived offspring in goGermline technology fulfills the reduction imperative of the 3R principle of humane experimental technique with animals. genesis 54:326–333, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.  相似文献   

19.
Goat embryonic stem (ES)-like cells could be isolated from primary materials-inner cell masses (ICMs) and remain undifferentiated for eight passages in a new culture system containing mouse ES cell conditioned medium (ESCCM) and on a feeder layer of mouse embryo fibroblasts (MEFs). However, when cultured in medium without mouse ESCCM, goat ES-like cells could not survive for more than three passages. In addition, no ES-like cells could be obtained when ICMs were cultured on goat embryo fibroblasts or the primary materials-whole goat blastocysts were cultured on MEFs. Goat ES-like cells isolated from ICMs had a normal karyotype and highly expressed alkaline phosphatase. Multiple differentiation potency of the ES-like cells was confirmed by differentiation into neural cells and fibroblast-like cells in vitro. These results suggest that mouse ES cells might secrete factors playing important roles in promoting goat ES-like cells' self-renewal, moreover, the feeder layers and primary materials could also influence the successful isolation of goat ES-like cells.  相似文献   

20.
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号