首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of high‐frequency ultrasound (HFUS) and UV represents a new approach to disinfecting surfaces. This study aimed to examine the inactivation efficiency of HFUS (1.7 MHz) and monochromatic UV radiation of KrCl excilamp (222 nm) in a single and a sequential mode against Bacillus cereus cells and spores added to glass surfaces. When treated by UV only, cells at populations of 103, 104, and 105 colony‐forming units (CFU)/cm2 showed 100% disinfection at high doses up to 1760 mJ/cm2. Spores at 104 CFU/cm2 were completely inactivated at a dose of 1170 mJ/cm2. Treatment with aqueous aerosol (produced by HFUS) reduced cell counts by 100% within a 40‐min exposure, whereas it was ineffective in inactivating spores under these conditions. In a sequential mode, the contaminated surface was pretreated with the sonicated aqueous aerosol and subsequently irradiated with the excilamp. It was found that HFUS exposure times and UV doses for complete inactivation decreased by a factor of 2 and 6–7, respectively, compared to sole HFUS or UV. A portable apparatus for surface disinfection was designed. The combined HFUS/UV method may be a promising technique for rapid disinfection of microbially contaminated surfaces.  相似文献   

2.
Aim: During aseptic manufacturing and specifically during the transfer of items into an isolator, disinfection of surfaces is essential for reducing the risk of final product contamination. Surface disinfection can be carried out by a variety of methods, however the most accepted current practice is a combination of spraying with 70% alcohol and wiping. The aim of this study was to evaluate the effectiveness of two wipe systems by determining their ability to remove, kill and transfer bacterial contaminants from standardized surfaces. Methods and Results: The protocol used to achieve these objectives was based on a newly published method specifically designed to test wipes. Alcohol impregnated wipes performed better at reducing microbial bioburden than the alcohol spray/dry wipe applications. Impregnated wipes drastically reduced (1–2 log10 reduction) a small bioburden (approx. 2 log10) of spores of Bacillus subtilis and methicillin‐resistant Staphylococcus aureus from the surface, but failed to remove (<0·2 log10 reduction) Staphylococcus epidermidis. The alcohol spray/dry wipes did not manage to remove (<0·2 log10 reduction) spore or bacterial bioburden from surfaces and was able to transfer some viable micro‐organisms to other surfaces. Both wipe types showed poor antimicrobial efficacy (<1 log10 reduction) against the test bacteria and spores. Conclusions: As far as the authors are aware this is the first time that such a practical study has been reported and our results suggest that the best wipes for surface disinfection in aseptic units are the alcohol (IPA) impregnated wipes when compared with the dry wipes sprayed with alcohol. Significance and Impact of the Study: The impregnated wipes performed better than the dry wipes sprayed with alcohol and should be used for surface disinfection in aseptic units.  相似文献   

3.
Acinetobacter baumannii and Pseudomonas aeruginosa are pathogens capable of colonizing the same infection sites and employing N-acyl homoserine lactone (AHL) based quorum-sensing systems to co-ordinate biofilm formation. Hence, the effect of P. aeruginosa AHLs on biofilm formation by A. baumannii and vice versa were investigated using the biofilm impaired quorum sensing mutants, A. baumannii M2 (abaI::Km) and P. aeruginosa PAO-JP2. Complementing the mutants with heterologous, extracted and pure AHLs increased biofilm mass significantly. The surface area coverage and biovolume also increased significantly as observed by confocal scanning laser microscopy which corroborated scanning electron microscope analysis. Autoinducer synthase gene promoters of A. baumannii, P abaI-lacZ, and P. aeruginosa, P lasI-lacZ, were induced (p < 0.05) by heterologous AHLs. Growth of A. baumannii was not inhibited by pyocyanin of P. aeruginosa which may allow their co-existence and interaction in the clinical setting, thereby affecting the severity of combined infections and therapeutic measures to control them.  相似文献   

4.
Antimicrobial peptides (AMPs) have the potential to become valuable antimicrobial drugs in the coming years, since they offer wide spectrum of action, rapid bactericidal activity, and low probability for resistance development in comparison with traditional antibiotics. The search and improvement of methodologies for discovering new AMPs to treat resistant bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa are needed for further development of antimicrobial products. In this work, the software Peptide ID 1.0® was used to find new antimicrobial peptide candidates encrypted in proteins, considering the physicochemical parameters characteristics of AMPs such as positive net charge, hydrophobicity, and sequence length, among others. From the selected protein fragments, new AMPs were designed after conservative and semi-conservative modifications and amidation of the C-terminal region. In vitro studies of the antimicrobial activity of the newly designed peptides showed that two peptides, P3-B and P3-C, were active against P. aeruginosa Escherichia coli and A. baumannii with low minimum inhibitory concentrations. Peptide P3-C was also active against K. pneumoniae and S. aureus. Furthermore, bactericidal activity and information on the possible mechanisms of action are described according to the scanning electron microscopy studies.  相似文献   

5.
doi: 10.1111/j.1741‐2358.2010.00400.x
Evaluation of the efficacy of chemical disinfectants for disinfection of heat‐polymerised acrylic resin Objective: This study evaluated the efficacy of disinfectants on the internal aspect of heat‐polymerised acrylic resin contaminated with microbial strains. Background: Dentures absorb oral fluids and become contaminated by different microorganisms. Methods: Two hundred and fifty rectangular specimens were made of heat‐polymerised acrylic resin, and then divided into five groups corresponding to the microbial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, S. mutans and Enterococcus faecalis). After contamination, the specimens were immersed in 1 and 2% sodium hypochlorite and 2% glutaraldehyde for periods of 5, 10 and 15 min. The specimens were placed into tubes containing different broths and incubated at 35°C and then visually analysed. Turbidity in the medium indicated microbial growth. The Fisher’s exact test was used in the analysis of the results. Results: The strain E. faecalis was the most resistant to the disinfectant solutions, and among them, glutaraldehyde was more effective than 2 and 1% hypochlorite for disinfection for 5 min; in the 10‐min period there were no differences between the disinfectants. In 15 min of immersion, 1% hypochlorite and glutaraldehyde were more effective than 2% hypochlorite. Conclusions: Disinfection for 10 min with 1% hypochlorite and glutaraldehyde is effective in disinfecting the internal aspect of heat‐polymerised acrylic resin.  相似文献   

6.
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1?±?1.5?×?106 P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.  相似文献   

7.
The emergence and rapid spread of multidrug-resistant bacteria has induced intense research for novel therapeutic approaches. In this study, the Acinetobacter baumannii bacteriophage D2 (vB_AbaP_D2) was isolated, characterized and sequenced. The endolysin of bacteriophage D2, namely Abtn-4, contains an amphipathic helix and was found to have activity against multidrug-resistant Gram-negative strains. By more than 3 log units, A. baumannii were killed by Abtn-4 (5 µM) in 2 h. In absence of outer membrane permeabilizers, Abtn-4 exhibited broad antimicrobial activity against several Gram-positive and Gram-negative bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus and Salmonella. Furthermore, Abtn-4 had the ability to reduce biofilm formation. Interestingly, Abtn-4 showed antimicrobial activity against phage-resistant bacterial mutants. Based on these results, endolysin Abtn-4 may be a promising candidate therapeutic agent for multidrug-resistant bacterial infections.  相似文献   

8.
A quadruplex real-time (RT) qPCR assay for the detection and quantification in 4 h of Staphylococcusaureus, Pseudomonasaeruginosa, Acinetobacterbaumannii and Stenotrophomonasmaltophilia directly from bronchoalveolar lavage specimens was developed. The specificity of the assay was 100% for all four species.  相似文献   

9.
Biswajit Mishra 《Biofouling》2017,33(7):544-555
Infections on implanted medical devices are a challenging problem, especially when bacteria form difficult-to-treat biofilms. Antimicrobial peptides are considered to be a solution due to their potency against antibiotic-resistant superbugs. Previously, the authors’ laboratory demonstrated the prevention of staphylococcal biofilm formation in an animal catheter model by injecting merecidin (formerly known as 17BIPHE2), a peptide engineered based on the only human cathelicidin. This study documents an alternative solution via covalent immobilization of FK-16, amino acid sequence FKRIVQRIKDFLRNLV-amide, which corresponds to the major antimicrobial region (residues 17–32) of LL-37. FK-16 is superior to the longer peptide LL-37 in terms of synthesis cost and the shorter peptide KR-12 in terms of activity spectrum. Indeed, the FK16-coated titanium surface showed a broad-spectrum activity against the ESKAPE pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. It also demonstrated anti-adhesion and biofilm inhibition capabilities against both S. aureus and E. coli.  相似文献   

10.
The formation of copper(II) complexes of an aminoglycoside antibiotic – sisomicin – was studied by potentiometry and spectroscopic techniques (UV–Vis, CD, NMR and EPR). At physiological pH, Cu(II) is bound to both amino functions and hydroxyl oxygen of the 2-deoxystreptamine moiety. When pH increases slightly, another amino group located at the aminosugar ring becomes engaged in the coordination process. Microbiological studies with the use of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa showed that copper(II) does not interfere with the bactericidal action of sisomicin.  相似文献   

11.
Acylated homoserine lactones (AHLs) are self-generated diffusible signal molecules that mediate population density dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria, and several virulence genes of human pathogens are known to be controlled by AHLs. In this study, strains of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae, isolated from intensive care patients, were screened for AHL production by using AHL responsive indicator strains of Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1. Positive reactions were recorded for all 50 isolates of P. aeruginosa and 10 isolates of Acinetobacter baumannii with Agrobacterium tumefaciens NT1. Surprisingly, most P. aeruginosa isolates gave negative results with C. violaceum CV026 in contrast to previous reports. This suggests that the new isolates of P. aeruginosa either failed to make short chain AHLs or the level of the signal molecule is very low.  相似文献   

12.
Bactericidal activities of peripheral white blood cells obtained from patients and from healthy persons were examined in vitro. The results obtained are summarized as follows. 1. Peripheral white blood cells from patients receiving corticosteroid and radiation therapy showed decreased levels of intracellular bactericidal activities against Staphylococcus aureus. The leukocytes from almost all patients examined displayed intense activities of intracellular bacterial killing against Streptococcus pyogenes. 2. Only polymorphonuclear leukocytes (PMNs) and macrophages obtained from patients in severe stages of diabetes mellitus exhibited decreased levels of intracellular bactericidal activities against S. aureus. 3. The leukocytes from all patients examined exhibited the same levels of intracellular bactericidal effects against S. pyogenes as leukocytes from healthy persons. 4. Pseudomonas aeruginosa, which was phagocytized by PMNs obtained from healthy persons, demonstrated a remarkable degree of resistance to any intracellular bactericidal effect.  相似文献   

13.
The efficiency of ultraviolet (UV) light disinfection of wastewater effluent using a large-scale pilot system was studied. The relationship between biofilm and siderophore production and UV doses received by Pseudomonas aeruginosa strain ATCC 15442 was determined. UV decreased pyoverdine production and enhanced biofilm production. Consequently external factors conditioned by both pyoverdine and biofilm may affect the UV effect on bacterial disinfection.  相似文献   

14.
Aims: Multidrug‐resistant opportunistic pathogens are clinically significant and require the development of new antimicrobial methods. In this study, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus cells were exposed to atmospheric plasma on agar plates and in vitro on porcine skin for the purpose of testing bacterial inactivation. Methods and Results: Microbial inactivation at varying exposure durations was tested using a nonthermal plasma jet generated with a DC voltage from ambient air. The observed reduction in colony forming units was quantified as log10 reductions. Conclusions: Direct plasma exposure significantly inactivated seeded bacterial cells by approx. 6 log10 on agar plates and 2–3 log10 on porcine skin. On agar plates, an indirect ‘bystander’ inactivation outside the plasma delivery area was also observed. The reduced inactivation observed on the skin surface was most likely due to cell protection by the variable surface architecture. Significance and Impact of Study: Atmospheric plasma has potential for clinical application as a disinfectant of patient skin and medically relevant surfaces.  相似文献   

15.
Attachment tendencies of Escherichia coli K12, Pseudomonas aeruginosa ATCC 9027, and Staphylococcus aureus CIP 68.5 onto glass surfaces of different degrees of nanometer-scale roughness have been studied. Contact-angle and surface-charge measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM) were employed to characterize substrata and bacterial surfaces. Modification of the glass surface resulted in nanometer-scale changes in the surface topography, whereas the physicochemical characteristics of the surfaces remained almost constant. AFM analysis indicated that the overall surface roughness parameters were reduced by 60–70%. SEM, CLSM, and AFM analysis clearly demonstrates that although E. coli, P. aeruginosa and S. aureus present significantly different patterns of attachment, all of the species exhibited a greater propensity for adhesion to the “nano-smooth” surface. The bacteria responded to the surface modification with a remarkable change in cellular metabolic activity, as shown by the characteristic cell morphologies, production of extracellular polymeric substances, and an increase in the number of bacterial cells undergoing attachment.  相似文献   

16.
The antibacterial activity of photocatalytic titanium dioxide (TiO2) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO2 substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO2 and carbon-doped TiO2 substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO2 substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO2 substrates than by pure TiO2 substrates. These findings suggest that nitrogen-doped TiO2 has potential application in the development of alternative disinfectants for environmental and medical usages.  相似文献   

17.
Bauhinia variegata, commonly known as Koiralo is considered as medicinal plant in Nepal and India. The alcoholic extract of this plant was found to have antimicrobial activity against Bacillus subtilis (ATCC 6635) Pseudomonas aeruginosa (ATCC 27853), Salmonella typhi, Shigella dysenteriae, Staphylococcus aureus (ATCC 29213) and Vibrio cholerae. The largest zone of inhibition (18 mm) was found to be exhibited against B. subtilis. For this organism the minimum bactericidal concentration (MBC) of the crude extract was 0.39 mg/ml. The extract was found to be more effective against gram-positive than gram-negative bacteria. The antimicrobial activity of the extract was found to be decreased during purification.  相似文献   

18.
Cymbopogon citratus-mediated pure aluminium oxide (Al2O3) and europium (Eu)-doped Al2O3 with different amounts of metal ion were prepared using a green synthesis method. Synthesised nanoparticles were characterised by ultraviolet (UV)-visible spectroscopy, photoluminescence (PL), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Synthesis of nanoparticles is confirmed by using UV-visible spectroscopy showing maximum absorption at 411 and 345 nm for Al2O3 and Eu-doped Al2O3, respectively. The antibacterial activity of prepared nanoparticles was evaluated against Pseudomonas aeruginosa, Streptococcus aureus, Escherichia coli and Klebsiella pneumoniae using a well-diffusion technique. The effect of pure Al2O3 and Eu-doped nanoparticles shows excellent results against P. aeruginosa, S. aureus, E. coli and K. pneumoniae.  相似文献   

19.
Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses, increasing a potential public health risk. The virucidal properties of wipes with a singlet-oxygen-generating immobilized photosensitizer (IPS) coating were compared to those of similar but uncoated wipes (non-IPS) and of commonly used viscose wipes. Wipes were spiked with hNoV GI.4 and GII.4, murine norovirus 1 (MNV-1), human adenovirus type 5 (hAdV-5), and influenza virus H1N1 to study viral persistence. We also determined residual and transferred virus proportions on steel carriers after successively wiping a contaminated and an uncontaminated steel carrier. On IPS wipes only, influenza viruses were promptly inactivated with a 5-log10 reduction. D values of infectious MNV-1 and hAdV-5 were 8.7 and 7.0 h on IPS wipes, 11.6 and 9.3 h on non-IPS wipes, and 10.2 and 8.2 h on viscose wipes, respectively. Independently of the type of wipe, dry cleaning removed, or drastically reduced, initial spot contamination of hNoV on surfaces. All wipes transferred hNoV to an uncontaminated carrier; however, the risk of continued transmission by reuse of wipes after 6 and 24 h was limited for all viruses. We conclude that cleaning wet spots with dry wipes efficiently reduced spot contamination on surfaces but that cross-contamination with noroviruses by wiping may result in an increased public health risk at high initial virus loads. For influenza virus, IPS wipes present an efficient one-step procedure for cleaning and disinfecting contaminated surfaces.  相似文献   

20.
Aims: To examine the killing efficiency of UV KrCl excilamp against Gram‐positive and Gram‐negative bacteria. Methods and Results: Vegetative cells of Bacillus cereus, Bacillus subtilis, Escherichia coli O157:H7, Staphylococcus aureus and Streptococcus pyogenes at initial populations from 102 to 107 colony‐forming units (CFU) ml?1 were treated by KrCl excilamp in sterile Ringer’s solution with and without H2O2. The number of viable cells was determined using spread plating techniques and nutrient agar method with subsequent incubation at 28°C or 37°C for 24 h. At estimated populations of 102–105 CFU ml?1E. coli O157:H7 and Staph. aureus were the most sensitive and showed 100% disinfection within 15 s (29·2 mJ cm?2). Bacillus subtilis was more sensitive to UV treatment than B. cereus. The UV/H2O2 inactivation rate coefficients within this population range were two times higher than those observed for UV treatment alone. No effect of H2O2 was observed at 107 CFU ml?1 for Bacillus sp. and Strep. pyogenes. Conclusions: The narrow‐band UV radiation at 222 nm was effective in the rapid disinfection of bacteria in aqueous suspensions. Significance and Impact of the Study: KrCl excilamps represent UV sources which can be applied for disinfection of drinking water in advanced oxidation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号