首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We screened for microorganisms able to use flavonoids as a carbon source; and one isolate, nominated Stilbella fimetaria SES201, was found to possess a disaccharide-specific hydrolase. It was a cell-bound ectoenzyme that was released to the medium during conidiogenesis. The enzyme was shown to cleave the flavonoid hesperidin (hesperetin 7-O-α-rhamnopyranosyl-β-glucopyranoside) into rutinose (α-rhamnopyranosyl-β-glucopyranose) and hesperetin. Since only intracellular traces of monoglycosidase activities (β-glucosidase, α-rhamnosidase) were produced, the disaccharidase α-rhamnosyl-β-glucosidase was the main system utilized by the microorganism for hesperidin hydrolysis. The enzyme was a glycoprotein with a molecular weight of 42224 Da and isoelectric point of 5.7. Even when maximum activity was found at 70°C, it was active at temperatures as low as 5°C, consistent with the psychrotolerant character of S. fimetaria. Substrate preference studies indicated that the enzyme exhibits high specificity toward 7-O-linked flavonoid β-rutinosides. It did not act on flavonoid 3-O-β-rutinoside and 7-O-β-neohesperidosides, neither monoglycosylated substrates. In an aqueous medium, the α-rhamnosyl-β-glucosidase was also able to transfer rutinose to other acceptors besides water, indicating its potential as biocatalyst for organic synthesis. The monoenzyme strategy of S. fimetaria SES201, as well as the enzyme substrate preference for 7-O-β-flavonoid rutinosides, is unique characteristics among the microbial flavonoid deglycosylation systems reported.  相似文献   

2.
A molecular display technology that uses the displayed proteins on cell surfaces has many applications in microbiology and molecular biology. Here, we describe the resistance of displayed proteins to proteases using simulated gastric fluid (SGF), which included pepsin at pH 2. The displayed β-glucosidase resisted pepsin digestion compared with secreted, free β-glucosidase. In SDS-PAGE and Western blotting analysis, the secreted β-glucosidase was immediately digested within 1 min following SGF treatment, although the displayed β-glucosidase was stable for more than 60 min following SGF treatment. In addition, the residual activity of secreted β-glucosidase was completely destroyed after 10 min SGF treatment. However, displayed β-glucosidase retained 14% of its residual activity following the same treatment. These results clearly show that cell surface display technology using enzymes can reveal the protease resistance of a protein of interest under various conditions.  相似文献   

3.
Temporal changes in α-and β-glucosidase activities, dissolved organic matter content, and bacterial biomass were studied in the superficial sediment layer of a eutrophic lake during the period of anoxia. The mean α-and β-glucosidase activities were 30.7±11.0 and 15.1±6.2 nmol h−1 g−1 of dry sediment, respectively. The specifc β-glucosidase activity seemed to be stimulated by carbohydrates (r=0.80, P<0.05), whereas the specifc α-glucosidase activity was negatively correlated with the dissolved protein concentration (r=−0.72, P<0.10). To test the effect of organic matter on hydrolytic activities under controlled conditions, changes in specific activities were studied in relation to the concentrations of different types of organic matter: phytoplankton, polymers (proteins, cellobiose, and starch) and monomers (glucose and amino acids). The specifc α-and β-glucosidase activities were strongly induced by their natural substrates (starch and cellobiose, respectively) (P<0.05) and were not inhibited by glucose. Proteins inhibited these activities (P<0.05), whereas supplementation with amino acids had no effect on specifc glycolytic activities.  相似文献   

4.
To evaluate the potential of the production of the ectomycorrhizal fungus Tricholoma matsutake to produce carbohydrases, (1) the distribution of carbohydrase activities among the different strains (18 strains) was investigated and (2) the abilities of T. matsutake and saprophytic fungi to produce β-glucosidase were compared. The results showed that the carbohydrase productions patterns of T. matsutake still resemble one another. Moreover, this fungus exhibited markedly higher β-glucosidase than did the saprophytic mushrooms. Tricholoma matsutake showed weak production of α-amylase and α-glucosidase in a static cultur filtrate. On the other hand, glucoamylase activity was not observed. Surprisingly, we discovered that β-glucosidase demonstrated strong activity. This finding suggests that this fungus has saprotrophic abilities. The carbohydrase production systems in T. matsutake were characterized from our experimental results. Also, we point out some weak points in the carbohydrase production systems of T. matsutake.  相似文献   

5.
Qualitative and quantitative changes in glycosphingolipids, together with changes in the expression of the corresponding glycosyltransferases, have been reported along neuronal differentiation and aging. Plasma membrane (PM) glycosphingolipid pattern and content are the result of a complex network of metabolic pathways, including those potentially involving the activity of PM glycohydrolases. We analyzed the total cell activities of sialyltransferase I, II and IV, sialidase, β-galactosidase and β-glucosidase, and the PM-associated activities of sialidase Neu3, β-galactosidase, Conduritol B Epoxide-sensitive β-glucosidase and β-glucosidase GBA2 in rat cerebellar granule cells along differentiation and aging in culture. Sialyltransferase activities increased during cell differentiation, in agreement with the known increase of the total ganglioside content during neuronal maturation. The remodeling of ganglioside pattern could be because of the augmented activities of total sialidase and, within PM, to the action of the cell surface associated sialidase Neu3. Sialidase activities remained high during aging, in agreement with the known progressive ganglioside reduction in brain senescence. As PM β-galactosidase and β-glucosidase activities and parallely ceramide levels markedly increased along in vitro aging, PM ceramide production in neurons might be because of local catabolism of glycosphingolipids and not only to that of sphingomyelin, as already reported in human fibroblasts.  相似文献   

6.
In order to determine the effect of various soil components on the activity of proteins, we monitored the fluorescence and the enzymatic activity of, respectively, green fluorescent protein (GFP) and β-glucosidase adsorbed on fine soil particles. We also monitored the activity of these proteins in the presence of components that are representative of soil colloids: a montmorillonite clay, goethite and organic matter extracted from soil. Upon adsorption on clay and goethite, GFP lost its fluorescence properties while β-glucosidase suffered only a partial loss of its catalytic activity. Extractable organic matter had an inactivating role on GFP while it did not cause inactivation of β-glucosidase. When GFP and β-glucosidase adsorbed on particles from natural soil samples, their behaviour was consistent with the behaviour observed for these proteins in the presence of the separate components, suggesting that the macroscopic activity of proteins adsorbed on soil particles corresponds to an average of the activities of proteins adsorbed on a mixture of surfaces. The monitoring of the proteins on soil particles with different organic matter contents has also shown that organic matter can have different effects (protecting or inactivating) on different proteins.  相似文献   

7.
We tested whether seasonal changes in the sources oforganic substances for microbial metabolism were reflected changes in the activities of five extracellular enzymes in the eighth order lowland River Elbe, Germany. Leucine aminopeptidase showed the highest activities in the water column and the sediments, followed by phosphatase > β-glucosidase > α-glucosidase > exo-1,4-β-glucanase. Individual enzymes exhibited characteristic seasonal dynamics, as indicated by their relative contribution to cumulative enzyme activity. Leucine aminopeptidase was significantly more active in spring and summer. In contrast, the carbohydrate-degrading enzymes peaked in autumn, and β-glucosidase activity peaked once again in winter. Thus, in sediments, the ratio of leucine aminopeptidase/β-glucosidase reached significant higher medians in spring and summer (5-cm depth: ratio 7.7; 20-cm depth: ratio 10.1) than in autumn and winter (5-cm depth: ratio 3.7, 20-cm depth: ratio 6.3). Therelative activity of phosphatase in the sediments was seasonally related to both the biomass of planktonic algae as well as to the high content of total particulate phosphorus in autumn and winter. Due to temporal shifts in organic matter supply and changes in the storage capacity of sediments, the seasonal peaks of enzyme activities in sediments exhibited a time lag of 2–3 months compared to that in the water column, along with a significant extension of peak width. Hence, our data show that the seasonal pattern of extracellular enzyme activities provides a sensitive approach to infer seasonal or temporary availability of organic matter in rivers from autochthonous and allochthonous sources. From the dynamics of individual enzyme activities, a consistent synoptic pattern of heterotrophic functioning in the studied river ecosystem could be derived. Our data support the revised riverine productivity model predicting that the metabolism of organic matter in high-order rivers is mainly fuelled by autochthonous production occurring in these reaches and riparian inputs.  相似文献   

8.
The activities of plasma membrane associated sialidase Neu3, total β-glucosidase, CBE-sensitive β-glucosidase, non-lysosomal β-glucosyl ceramidase GBA2, β-galactosidase, β-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors, and differentiated cells. Cell immunostaining for specific markers of the differentiation process, performed after 7 days in culture in presence of differentiating agents, clearly showed the presence of oligodendrocytes, astrocytes and neurons. Glial cells were the most abundant. Sialidase Neu3 after a decrease from progenitors to precursors, showed an increase parallel to the differentiation process. All the other glycosidases increased their activity along differentiation. The activity of CBE-sensitive β-glucosidase and GBA2 were very similar at the precursor stage, but CBE-sensitive β-glucosidase increased 7 times while GBA2 only two in the differentiated cells. In addition, we analysed also sphingomyelinase as enzyme specifically associated to sphingolipids. The activity of this enzyme increased from precursors to differentiated cells.  相似文献   

9.
This work studied the effect of two cell-surface lectins isolated from the nitrogen-fixing soil bacterium Azospirillum brasilense Sp7 and from its mutant defective in hemagglutinating activity, A. brasilense Sp7.2.3, on the activities of α-glucosidase, β-glucosidase and β-galactosidase in the exocomponent, membrane and apoplast fractions of wheat-seedling roots. Lectin (40 μg mL−1) incubation for 1 h of the plant fractions increased the enzymes’ activities; both wild-type and mutant lectins were most stimulatory to the activities of all the exocomponent-fraction enzymes studied and to the apoplast-fraction β-glucosidase. Pretreatment of the lectins with their carbohydrate hapten, L-fucose, lowered the effect. The observed differences in the lectins’ ability to influence enzyme catalytic activity are explained by change in the antigenic properties of the mutant lectin.  相似文献   

10.
Khan  Z.U.  Chugh  T.D.  Chandy  R.  Provost  F.  Boiron  P. 《Mycopathologia》1998,143(3):151-154
In this study, using the API-ZYM system, we have reported the enzyme profile of 42 soil strains and 2 clinical strains of Nocardia asteroides isolated locally. Of the 19 enzymes tested, only 7 were demonstrable in over 90% of the soil isolates. These included alkaline phosphatase, esterase lipase, leucine arylamidase, acid phosphatase, phosphohydrolase, α-glucosidase and β-glucosidase. In addition, β-galactosidase activity was demonstrated in all the strains by the O-nitrophenyl-β-D-galactopyranoside (ONPG) test. The enzymes which were not demonstrable in >95% of the strains included valine arylamidase, cystine arylamidase, trypsin, chymotrypsin, α-galactosidase, β-glucoronidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase. With the exception of valine arylamidase, which was lacking in all but one isolate, the enzyme profiles of the soil isolates were comparable with the clinical isolates of N. asteroides reported in previous studies. The reasons for this difference in the two sets of isolates is not clear. The study reinforces the view that specific differences in the enzymatic profiles of Nocardia species could be used for their rapid identification. However, more extensive studies are needed to establish the reproducibility of this method. To the best of our knowledge, this is the first study of the enzymatic profile of soil isolates of N. asteroides originating from a single geographic region. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
β-Glucosidase and β-galactosidase activity profile tested in different seeds during 24 h germination revealed reasonably high levels of activity inVigna radiata, Cicer arietinum, andTrigonella foenum-graecum. In all seeds tested, β-galactosidase activity was, in general, higher than that of β-glucosidase.T. foenum-graecum seedlings exhibited maximal total and specific activities for both the enzymes during 72 h germination. Se supplementation as Na2SeO3 up to 0.75 ppm was found to be beneficial to growth and revealed selective enhancement of β-galactosidase activity by 40% at 0.5 ppm Se. The activities of both the enzymes drastically decreased at 1.0 ppm level of Se supplementation. On the contrary, addition of Na2SeO3 in vitro up to 1 ppm to the enzyme extracts did not influence these activities. Hydrolytic rates of β-glucosidase in both control and Se-supplemented groups were enhanced by 20% with 0.05M glycerol in the medium and 30% at 0.1M glycerol. The rates were marginally higher in Se-supplemented seedlings than the controls, irrespective of added glycerol in the medium. In contrast, hydrolysis by β-galactosidase showed a trend of decrease in Se-supplemented seedlings compared to the control, when glycerol was present in the medium. Addition of Se in vitro in the assay medium showed no difference in the hydrolytic rate by β-galactosidase when compared to control, while the activity of β-glucosidase declined by 50%. Se-grown seedlings showed an enhancement of transglucosidation rate by 40% in the presence of 0.1M glycerol. The study reveals a differential response to Se among the β-galactosidase and β-glucosidase ofT. foenumgraecum with increase in the levels of β-galactosidase activity.  相似文献   

12.
We constructed a recombinant industrial Saccharomyces cerevisiae yeast strain OC2-AXYL2-ABGL2-Xyl2 by inserting two copies of the β-glucosidase (BGL) and β-xylosidase (XYL) genes, and a gene cassette for xylose assimilation in the genome of yeast strain OC-2HUT. Both BGL and XYL were expressed on the yeast cell surface with high enzyme activities. Using OC2-AXYL2-ABGL2-Xyl2, we performed ethanol fermentation from a mixture of powdered cellulose (KC-flock) and Birchwood xylan, with the additional supplementation of a 30-g/l Trichoderma reesei cellulase complex mixture. The ethanol yield (gram per gram of added cellulases) of the strain OC2-AXYL2-ABGL2-Xyl2 increased approximately 2.5-fold compared to that of strain OC2-Xyl2, which lacked β-glucosidase and β-xylosidase activities. Notably, the concentration of additional T. reesei cellulase was reduced from 30 to 24 g/l without affecting ethanol production. The BGL- and XYL-displaying industrial yeast of the strain OC2-AXYL2-ABGL2-Xyl2 represents a promising yeast for reducing cellulase consumption of ethanol fermentation from lignocellulosic biomass by compensating for the inherent weak BGL and XYL activities of T. reesei cellulase complexes.  相似文献   

13.
In this study, we have attempted to determine the effects of dietary fructose polymers (fructan), high molecular-weight β-(2,6)-linked levan, and low-molecular-weight β-(2,1)-linked inulin, on two intestinal enzymes (β-glucuronidase and β-glucosidase). As a preliminary experiment, when intestinal microflora were cultured in anaerobic media harboring levan or its oligosaccharides, bacterial cell growth was observed in the levanoligosaccharide-supplemented media, but not in the levan-supplemented media, indicating that levan’s size is important for the utilization by intestinal bacteria of levan as an energy source. In our animal study, the intake of a levan-rich diet was determined to significantly attenuate the activity of the harmful enzyme β-glucuronidase, but did not affect the activity of β-glucosidase.  相似文献   

14.
Xylanase, β-glucosidase, β-xylosidase, endoglucanase and polygalacturonase production fromCurvularia inaequalis was carried out by means of solid-state and submerged fermentation using different carbon sources. β-Glucosidase. β-xylosidase, polygalacturonase and xylanase produced by the microorganisms were characterized. β-Glucosidase presented optimum activity at pH 5.5 whereas xylanase, poly-galacturonase and β-xylosidase activities were optimal at pH 5.0. Maximal activity of β-glucosidase was determined at 60°C, β-xylosidase at 70°C, and polygalacturonase and xylanase at 55°C. These enzymes were stable at acidic to neutral pH and at 40–45 °C. The crude enzyme solution was studied for the hydrolysis of agricultural residues.  相似文献   

15.
The removal of noncovalently bound polysaccharide coating from the extracellular enzymes ofAspergillus niger, by the technique of compartmental electrophoresis, had a very dramatic effect on the stability of β-glucosidase. The polysaccharide-β-glucosidase complex was extremely resistant to proteinases and far more stable against urea and temperature as compared with polysaccharide-free β-glucosidase. The β-glucosidase-polysaccharide complex was 18-, 36-, 40-, and 82-fold more stable against chymotrypsin, 3 mol/L urea, total thermal denaturation and irreversible thermal denaturation, respectively, as compared with polysaccharide-free β-glucosidase. The activation energy of polysaccharide-complexed β-glucosidase (55 kJ/mol) was lower than polysaccharide-free enzyme (61 kJ/mol), indicating a slight activation of the enzyme by the polysaccharide. No significant difference could be detected in the specificity constant (V/K m) for 4-nitrophenyl β-d-glucopyranoside between polysaccharide-free and polysaccharide-complexed β-glucosidase. We suggest that the function of these polysaccharides secreted by fungi includingA. niger might be to protect the extracellular enzymes from proteolytic degradation, hence increasing their life span.  相似文献   

16.
For efficient production of isoflavone aglycones from soybean isoflavones, we isolated three novel types of β-glucosidase (BGL1, BGL3, and BGL5) from the filamentous fungi Aspergillus oryzae. Three enzymes were independently displayed on the cell surface of a yeast Saccharomyces cerevisiae as a fusion protein with α-agglutinin. Three β-glucosidase-displaying yeast strains hydrolyzed isoflavone glycosides efficiently but exhibited different substrate specificities. Among these β-glucosidases, BGL1 exhibited the highest activity and also broad substrate specificity to isoflavone glycosides. Although glucose released from isoflavone glycosides are generally known to inhibit β-glucosidase, the residual ratio of isoflavone glycosides in the reaction mixture with BGL1-displaying yeast strain (Sc-BGL1) reached approximately 6.2%, and the glucose concentration in the reaction mixture was maintained at lower level. This result indicated that Sc-BGL1 assimilated the glucose before they inhibited the hydrolysis reaction, and efficient production of isoflavone aglycones was achieved by engineered yeast cells displaying β-glucosidase.  相似文献   

17.
Studies were carried out for β-glucosidase production using apple pomace (AP) in solid-state fermentation using 24 factorial design and response surface methodology. The influence of four independent variables including initial moisture level and inducers [veratryl alcohol (VA), lactose (LAC) and copper sulfate (CS)] was studied. The experimental design showed that initial moisture level had significant negative effect on the response. Higher β-glucosidase activity of 64.18 IU/gram fermented substrate (gfs) was achieved in solid-state tray fermentation with optimum conditions having initial moisture level 55% (v/w), pH 4.5, 2 mM/kg VA, 2% (w/w) LAC and 1.5 mM/kg CS concentration, respectively,. The non-specific chitinase 70.28 ± 6.34 IU/gfs and chitosanase activities 60.18 ± 6.82 to 64.20 ± 7.12 IU/gfs were observed. The study demonstrated that AP can be potentially used for the β-glucosidase production by Aspergillus niger. Moreover, β-glucosidase can be used for the hydrolysis of chitin/chitosan to depolymerized products and in the formulation of biocontrol agents for enhanced entomotoxicity levels.  相似文献   

18.
Using a model system, the activities of α-L-arabinofuranosidase, β-glucosidase, and α-L-rhamonopyranosidase were determined in 32 strains of yeasts belonging to the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Hansenula, Kloeckera, Metschnikowia, Pichia, Saccharomyces, Torulaspora and Brettanomyces (10 strains); and seven strains of the bacterium Leuconostoc oenos. Only one Saccharomyces strain exhibited β-glucosidase activity, but several non-Saccharomyces yeast species showed activity of this enzyme. Aureobasidium pullulans hydrolyzed α-L-arabinofuranoside, β-glucoside, and α-L-rhamnopyranoside. Eight Brettanomyces strains had β-glucosidase activity. Location of enzyme activity was determined for those species with enzymatic activity. The majority of β-glucosidase activity was located in the whole cell fraction, with smaller amounts found in permeabilized cells and released into the growth medium. Aureobasidium pullulans hydrolyzed glycosides found in grapes. Received 02 February 1999/ Accepted in revised form 26 June 1999  相似文献   

19.
Changes in the activity and localization of nonspecific esterase, acid phosphatase, α-galactosidase and β-glucosidase inL. regale pistils after pollination with μ-irradiated pollen were studied. In the embryo sac and in the ovule reduction of AS-esterase and α-galactosidase and, at the same time, enhancement of α-esterase, acid phosphatase and β-glucosidase activities were observed. The changes in hydrolytic enzyme activities are discussed as manifestations of lethal factors resulting from structural disturbances of DNA in the generative nucleus and in sperms caused by irradiation.  相似文献   

20.
The novel finding of this study is that the δ-endotoxin present in the spore coat of Bacillus thuringiensis strain 1.1 (Bt1.1), plays a central role in spore germination by generation of germinant via its β-glucosidase activity and is based on the following: (i) the crystals of Bt1.1 consist of the 140 kDa δ-endotoxin which exhibits β-glucosidase enzymatic activity. Besides crystals, δ-endotoxin is also located in the spore coat and at this site displays β-glucosidase activity, resulting in glucose production; (ii) glucose is an efficient germinant of both Bt1.1 and acrystalliferous Bt4.1 strain; (iii) substrates of β-glucosidase can activate the germination of Bt1.1 spores, but not those of the acrystalliferous Bt4.1 sister strain that do not contain the 140 kDa δ-endotoxin; (iv) Reduction or enhancement of enzymatic activity of δ-endotoxin, results in retardation or acceleration of germination and outgrowth, respectively. Bt1.1 cells secrete a 60 kDa polypeptide which displays β-glucosidase activity as indicated by zymogram analysis and which is immunologically related to the 140 kDa δ-endotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号