首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of submitochondrial particles (ETP) with trypsin at 0 degrees destroyed NADPH leads to NAD (or 3-acetylpyridine adenine dinucleotide, AcPyAD) transhydrogenase activity. NADH oxidase activity was unaffected; NADPH oxidase and NADH leads to AcPyAD transhydrogenase activities were diminished by less than 10%. When ETP was incubated with trypsin at 30 degrees, NADPH leads to NAD transhydrogenase activity was rapidly lost, NADPH oxidase activity was slowly destroyed, but NADH oxidase activity remained intact. The reduction pattern by NADPH, NADPH + NAD, and NADH of chromophores absorbing at 475 minus 510 nm (flavin and iron-sulfur centers) in complex I (NADH-ubiquinone reductase) or ETP treated with trypsin at 0 degrees also indicated specific destruction of transhydrogenase activity. The sensitivity of the NADPH leads to NAD transhydrogenase reaction to trypsin suggested the involvement of susceptible arginyl residues in the enzyme. Arginyl residues are considered to be positively charged binding sites for anionic substrates and ligands in many enzymes. Treatment of ETP with the specific arginine-binding reagent, butanedione, inhibited transhydrogenation from NADPH leads to NAD (or AcPyAD). It had no effect on NADH oxidation, and inhibited NADPH oxidation and NADH leads to AcPyAD transhydrogenation by only 10 to 15% even after 30 to 60 min incubation of ETP with butanedione. The inhibition of NADPH leads to NAD transhydrogenation was diminished considerably when butanedione was added to ETP in the presence of NAD or NADP. When both NAD and NADP were present, the butanedione effect was completely abolished, thus suggesting the possible presence of arginyl residues at the nucleotide binding site of the NADPH leads to NAD transhydrogenase enzyme. Under conditions that transhydrogenation from NADPH to NAD was completely inhibited by trypsin or butanedione, NADPH oxidation rate was larger than or equal to 220 nmol min-1 mg-1 ETP protein at pH 6.0 and 30 degrees. The above results establish that in the respiratory chain of beef-heart mitochondria NADH oxidation, NADPH oxidation, and NADPH leads to NAD transhydrogenation are independent reactions.  相似文献   

2.
Licia N.Y. Wu  Ronald R. Fisher 《BBA》1982,681(3):388-396
Modification of pyridine dinucleotide transhydrogenase with tetranitromethane resulted in inhibition of its activity. Development of a membrane potential in submitochondrial particles during the reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH decreased to nearly the same extent as the transhydrogenase rate on tetranitromethane treatment of the membrane. Kinetics of the inactivation of homogeneous transhydrogenase and the enzyme reconstituted into phosphatidylcholine liposomes indicate that a single essential residue was modified per active monomer. NADP+, NADPH and NADH gave substantial protection against tetranitromethane inactivation of both the nonenergy-linked and energy-linked transhydrogenase reactions of submitochondrial particles and the NADPH → AcPyAD+ reaction of reconstituted enzyme. NAD+ had no effect on inactivation. Tetranitromethane modification of reconstituted transhydrogenase resulted in a decrease in the rate of coupled H+ translocation that was comparable to the decrease in the rate of NADPH → AcPyAD+ transhydrogenation. It is concluded that tetranitromethane modification controls the H+ translocation process solely through its effect on catalytic activity, rather than through alteration of a separate H+-binding domain. Nitrotyrosine was not found in tetranitromethane-treated transhydrogenase. Both 5,5′-dithiobis(2-nitrobenzoate)-accessible and buried sulfhydryl groups were modified with tetranitromethane. NADH and NADPH prevented sulfhydryl reactivity toward tetranitromethane. These data indicate that the inhibition seen with tetranitromethane results from the modification of a cysteine residue.  相似文献   

3.
Purified nicotinamide-nucleotide transhydrogenase from beef heart mitochondria was co-reconstituted with bacteriorhodopsin to from transhydrogenase-bacteriorhodopsin vesicles that catalyze a 20-fold light-dependent and uncoupler-sensitive stimulation of the reduction of NADP+ and NADP+ analogs by NADH and a 50-fold shift of the nicotinamide nucleotide ratio. In the presence of light, the transhydrogenase-bacteriorhodopsin vesicles catalyzed a pronounced light intensity-dependent inward proton pumping as indicated by a pH shift of the medium. As indicated by pH shifts, proton pumping by the bacteriorhodopsin essentially paralleled the light-driven transhydrogenase. Addition of valinomycin increased the pH shift twice with a concomitant 50% inhibition of the light-driven transhydrogenase, whereas nigericin inhibited the pH shift completely and the light-driven transhydrogenase partially. Taken together, these results suggest that transhydrogenase and bacteriorhodopsin interact through a delocalized proton-motive force. Possible partial reactions of transhydrogenase were investigated with transhydrogenase-bacteriorhodopsin vesicles energized by light. Reduction of oxidized 3-acetylpyridine adenine dinucleotide by NADH, previously claimed to represent partial reactions, was found to require NADPH. Similarly, reduction of thio-NADP+ by NADPH required NADH. It is concluded that these reactions do not represent partial reactions.  相似文献   

4.
Bovine heart mitochondrial transhydrogenase, a redox-linked proton pump, can be functionally and asymmetrically inserted into liposomes by a cholate-dialysis procedure such that the active site faces the external medium. N-(4-Azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine), a membrane-impermeant photoprobe, when encapsulated in the vesicles, covalently modified the enzyme and inhibited transhydrogenation between NADPH and the 3-acetylpyridine analog of NAD+ (AcPyAD+) in a light-dependent manner. External AcPyAD+ increased the rate of inactivation several fold, whereas NADPH, NADP+, and NADH were without effect. Labeling of the enzyme by intravesicular [35S]NAP-taurine was enhanced by AcPyAD+ and NADP+, decreased by NADH, and not significantly affected by NADPH. These results indicate that transhydrogenase spans the membrane and that substrate binding alters the conformation of that domain of the enzyme protruding from the inner surface of the membrane.  相似文献   

5.
S R Earle  S G O'Neal  R R Fisher 《Biochemistry》1978,17(22):4683-4690
Chemical-modification studies on submitochondrial particle pyridine dinucleotide transhydrogenase (EC 1.6.1.1) demonstrate the presence of one class of sulfhydryl group in the nicotinamide adenine dinucleotide phosphate (NADP) site and another peripheral to the active site. Reaction of the peripheral sulfhydryl group with N-ethylmaleimide, or both classes with 5,5'-dithiobis(2-nitrobenzoic acid), completely inactivated transhydrogenase. NADP+ or NADPH nearly completely protected against 5,5'-dithiobis(2-nitrobenzoic acid) inactivation and modification of both classes of sulfhydryl groups, while NADP+ only partially protected against and NADPH substantially stimulated N-ethylmaleimide inactivation. Methyl methanethiolsulfonate treatment resulted in methanethiolation at both classes of sulfhydryl groups, and either NADP+ or NADPH protected only the NADP site group. S-Methanethio and S-cyano transhydrogenases were active derivatives with pH optima shifted about 1 unit lower than that of the native enzyme. These experiments indicate that neither class of sulfhydryl group is essential for transhydrogenation. Lack of involvement of either sulfhydryl group in energy coupling to transhydrogenation is suggested by the observations that S-methanethio transhydrogenase is functional in (a) energy-linked transhydrogenation promoted by phenazine methosulfate mediated ascorbate oxidation and (b) the generation of a membrane potential during the reduction of NAD+ by reduced nicotinamide adenine dinucleotide phosphate (NADPH).  相似文献   

6.
Bovine heart mitochondrial pyridine dinucleotide transhydrogenase has been purified to near-homogeneity by a six-step procedure. The final preparation is characterized by a single major band with minor contaminants on sodium dodecyl sulfate polyacrylamide gels. The minimal molecular weight is estimated to be 120,000. The protein of the major band is identified as the transhydrogenase by its (a) protection against trypsinolysis with NADH and enhanced degradation in the presence of NADPH, (b) inhibition by low concentrations of palmitoyl-CoA and by Mg2+, and (c) pH-rate profile. The specific activity of purified transhydrogenase is increased over twofold after sonication with mitochondrial phospholipids. The enzyme contains no flavin and is not contaminated with cytochromes, NADH dehydrogenase, or NADPH dehydrogenase.  相似文献   

7.
Midgut mitochondria from fifth larval instar Manduca sexta exhibited a transhydrogenase that catalyzes the following reversible reaction: NADPH + NAD(+) <--> NADP(+) + NADH. The NADPH-forming transhydrogenation occurred as a nonenergy- and energy-linked activity. Energy for the latter was derived from the electron transport-dependent utilization of NADH or succinate, or from Mg++-dependent ATP hydrolysis by ATPase. The NADH-forming and all of the NADPH-forming reactions appeared optimal at pH 7.5, were stable to prolonged dialysis, and displayed thermal lability. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited the NADPH --> NAD(+) and energy-linked NADH --> NADP(+) transhydrogenations, but not the nonenergy-linked NADH --> NADP(+) reaction. Oligomycin only inhibited the ATP-dependent energy-linked activity. The NADH-forming, nonenergy-linked NADPH-forming, and the energy-linked NADPH-forming activities were membrane-associated in M. sexta mitochondria. This is the first demonstration of the reversibility of the M. sexta mitochondrial transhydrogenase and, more importantly, the occurrence of nonenergy-linked and energy-linked NADH --> NADP(+) transhydrogenations. The potential relationship of the transhydrogenase to the mitochondrial, NADPH-utilizing ecdysone-20 monooxygenase of M. sexta is considered.  相似文献   

8.
Kinetic measurements indicate that the energy-independent transhydrogenation of 3-acetylpyridine-NAD+ by NADPH in membranes of Escherichia coli follows a rapid equilibrium random bireactant mechanism. Each substrate, although reacting preferentially with its own binding site, is able to interact with the binding site of the other substrate to cause inhibition of enzyme activity. 5'-AMP (and ADP) and 2'-AMP interact with the NAD+- and NADP+-binding sites, respectively. Phenylglyoxal and 2,3-butanedione in borate buffer inhibit transhydrogenase activity presumably by reacting with arginyl residues. Protection against inhibition by 2,3-butanedione is afforded by NADP+, NAD+, and high concentrations of NADPH and NADH. Low concentrations of NADPH and NADH increase the rate of inhibition by 2,3-butanedione. Similar effects are observed for the inactivation of the transhydrogenase by tryptic digestion in the presence of these coenzymes. It is concluded that there are at least two conformations of the active site of the transhydrogenase which differ in the extent to which arginyl residues are accessible to exogenous agents such as trypsin and 2,3-butanedione. One conformation is induced by low concentrations of NADH and NADPH. Under these conditions the coenzymes could be reacting at the active site or at an allosteric site. The stimulation of transhydrogenase activity by low concentrations of the NADH is consistent with the latter possibility.  相似文献   

9.
A ferredoxin-NAD+ oxidoreductase (EC 1.18.1.3) has been isolated from extracts of the obligate methanotroph Methylosinus trichosporium OB3b. This enzyme was shown to couple electron flow from formate dehydrogenase (NAD+ requiring) to ferredoxin. Ferredoxin-NAD+ reductase was purified to homogeneity by conventional chromatography techniques and was shown to be a flavoprotein with a molecular weight of 36,000 +/- 1,000. This ferredoxin reductase was specific for NADH (Km, 125 microM) and coupled electron flow to the native ferredoxin and to ferredoxins from spinach, Clostridium pasteurianum, and Rhodospirillum rubrum (ferredoxin II). M. trichosporium ferredoxin saturated the ferredoxin-NAD+ reductase at a concentration 2 orders of magnitude lower (3 nM) than did spinach ferredoxin (0.4 microM). Ferredoxin-NAD+ reductase also had transhydrogenase activity which transferred electrons and protons from NADH to thionicotinamide adenine dinucleotide phosphate (Km, 9 microM) and from NADPH to 3-acetylpyridine adenine dinucleotide (Km, 16 microM). Reconstitution of a soluble electron transport pathway that coupled formate oxidation to ferredoxin reduction required formate dehydrogenase, NAD+, and ferredoxin-NAD+ reductase.  相似文献   

10.
Energization of the pyridine nucleotide transhydrogenase in everted membrane vesicles from Escherichia coli JM83 was compared with the process in vesicles of the same strain transformed with the plasmid pDC21 overexpressing this enzyme. Proton translocation was assayed by the quenching of the fluorescence of the probe quinacrine. Agents able to discharge transmembrane proton gradients such as nigericin and the uncouplers 3,3',4',5-tetrachlorosalicylanilide and carbonyl cyanide m-chlorophenylhydrazone inhibited ATP-dependent transhydrogenation of NADP by NADH and discharged transmembrane proton gradients generated by transhydrogenation of AcNAD by NADPH, by oxidation of NADH, and by hydrolysis of ATP. This was observed in everted membrane vesicles of both strains JM83 and JM83pDC21. These strains differed significantly in the response of the NADH oxidation-dependent transhydrogenase. This reaction was inhibited by nigericin and uncouplers in membrane vesicles of JM83 but there was little inhibition or the reaction was stimulated in JM83pDC21, in spite of the discharge of the NADH oxidation-generated proton gradient measured by quinacrine fluorescence in the latter strain. It is proposed that the transhydrogenase is energized by direct or local (nonbulk phase) proton translocation in membranes of this strain. Uncouplers might facilitate these routes but would not discharge them. The generality of these observations was shown using other strains. NADH oxidase activity was severalfold lower in membrane vesicles of JM83pDC21 compared with JM83. The levels of ubiquinone and cytochromes, and the activities of NADH dehydrogenases I and II, and of cytochrome oxidase, were similar in the two strains. It is concluded that the NADH oxidase activity of JM83pDC21 is low because of the reduced rate of collision between electron-transferring complexes of the respiratory chain due to the large amount of transhydrogenase protein in the membranes of this strain. The large amount of transhydrogenase favors direct, nonbulk phase proton transfer. Transhydrogenase activity was stimulated by Ca2+, Mg2+, or Mn2+.  相似文献   

11.
Pyridine nucleotide transhydrogenases of bacterial cytosolic membranes and mitochondrial inner membranes are proton pumps in which hydride transfer between NADP(+) and NAD(+) is coupled to proton translocation across cytosolic or mitochondrial membranes. The pyridine nucleotide transhydrogenase of Escherichia coli is composed of two subunits (alpha and beta). Three domains are recognized. The extrinsic cytosolic domain 1 of the amino-terminal region of the alpha subunit bears the NAD(H)-binding site. The NADP(H)-binding site is present in domain 3, the extrinsic cytosolic carboxyl-terminal region of the beta subunit. Domain 2 is composed of the membrane-intrinsic carboxyl-terminal region of the alpha subunit and the membrane-intrinsic amino-terminal region of the beta subunit. Treatment of the transhydrogenase of E. coli with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD chloride) inhibited enzyme activity. Analysis of inhibition revealed that several sites on the enzyme were involved. NBD chloride modified two (betaCys-147 and betaCys-260) of the seven cysteine residues present in the transhydrogenase. Modification of betaCys-260 in domain 2 resulted in inhibition of enzyme activity. Modification of residues other than cysteine residues also resulted in inhibition of transhydrogenation as shown by use of a cysteine-free mutant enzyme. The beta subunit was modified by NBD chloride to a greater extent than the alpha subunit. Reaction of domain 2 and domain 3 was prevented by NADPH. Modification of domain 3 is probably not associated with inhibition of enzyme activity. Modification of domain 2 of the beta subunit resulted in a decreased binding affinity for NADPH at its binding site in domain 3. The product resulting from the reaction of NBD chloride with NADPH was a very effective inhibitor of transhydrogenation. In experiments with NBD chloride in the presence of NADPH it is likely that all of the sites of reaction described above will contribute to the inhibition observed. The NBD-NADPH adduct will likely be more useful than NBD chloride in investigations of the pyridine nucleotide transhydrogenase.  相似文献   

12.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

13.
Mitochondrial NADH dehydrogenase has been purified to homogeneity by resolution of Complex I from beef heart mitochondria with the chaotrope NaClO4 and precipitation of the enzyme with ammonium sulfate. The enzyme is water-soluble, has a molecular weight of 69,000 ± 1000 as determined by gel filtration on Sephadex G-100 and agarose 1.5 M. It is an iron-sulfur flavoprotein, with the ratio of flavin (FMN) to nonheme iron to labile sulfide being 1:5–6:5–6. The FMN content suggests a minimum molecular weight of 74,000 ± 3000 for the enzyme. NADH dehydrogenase is composed of three subunits with apparent Mr values, as determined by acrylamide gel electrophoresis as well as by gel filtration on agarose 5 M both in the presence of sodium dodecyl sulfate, of about 51,000, 24,000, and 9–10,000. Coomassie blue stain intensities of the subunits on acrylamide gels suggest that they are present in NADH dehydrogenase in equimolar amounts. However, summation of the apparent Mr values of the dodecyl sulfate-treated subunits appears to overestimate the molecular weight of the native enzyme. The amino acid compositions of NADH dehydrogenase and of each of the isolated and purified subunits have been determined. NADH dehydrogenase catalyzes the oxidation of NADH and NADPH by quinones, ferric compounds, and NAD (3-acetylpyridine adenine dinucleotide was used). All the activities of NADH dehydrogenase are greatly stimulated by addition of guanidine (up to 150 mm), alkylguanidines, arginine, and arginine methyl ester to the assay medium. Phosphoarginine had no effect. These results pointed to the importance of the positively charged guanido group, which appears to interact with and neutralize the negative charges on NAD(P)H and thereby allow for better enzyme-substrate interaction. In the absence of guanidine, NADPH is essentially unoxidized by the enzyme at pH values above 6.0. However, both NADPH dehydrogenase and NADPH → NAD transhydrogenase activities increase dramatically as the assay pH is lowered below pH = 6. Since the pK of the 2′-phosphate of NADPH is 6.1, it appears that the above pH effect is related to protonation of the 2′-phosphate, thus rendering NADPH a closer electronic analog of NADH, which is the primary substrate of the enzyme.  相似文献   

14.
Yeast glutathione reductase catalyzes a pyridine nucleotide transhydrogenase reaction using either NADPH or NADH as the electron donor and thionicotinamideadenine dinucleotide phosphate as the electron acceptor. Competitive substrate inhibition of the transhydrogenase reaction by NADPH (Ki = 11 μM) is observed when NADPH is the electron donor. Competitive substrate inhibition by thionicotinamide-adenine dinucleotide phosphate (Ki = 58 μM) is observed with NADH as the electron donor. The turnover numbers of the two transhydrogenase reactions are similar and are equal to about 1% of the turnover number for the NADPH-dependent reduction of oxidized glutathione catalyzed by the enzyme. The transhydrogenase kinetics are analyzed in terms of a pingpong mechanism. It is concluded that the substrate inhibition results from formation of abortive complexes of NADPH with the reduced form of the enzyme and of thionicotinamide-adenine dinucleotide phosphate with the oxidized form of the enzyme. With NADPH as the electron donor, the apparent Michaelis constant for thionicotinamide-adenine dinucleotide phosphate is sensitive to the ionic composition of the assay medium. The data are interpreted to support the existence of a general pyridine nucleotide-binding site at the active site of the enzyme and separate from the binding site for oxidized glutathione.  相似文献   

15.
Pyridine dinucleotide transhydrogenase of the Rhodospirillum rubrum chromatophore membrane was readily resolved by a washing procedure into two inactive components, a soluble transhydrogenase factor protein and an insoluble membrane-bound factor. Transhydrogenation was reconstituted on reassociation of these components. The capacity of the membrane factor to reconstitute enzymatic activity was lost after proteolysis of soluble transhydrogenase factor-depleted membranes with trypsin. NADP+ or NADPH, but neither NAD+ nor NADH, stimulated by several fold the rate of trypsin-dependent inactivation of the membrane factor. Substantial protection of the membrane factor from proteolytic inactivation was observed in the presence of Mg2+ ions, an inhibitor of transhydrogenation, or when the soluble transhydrogenase factor was bound to the membrane. Coincident with the loss of enzymatic reconstitutive capacity of the membrane factor was a loss in the ability of the membranes to bind the soluble transhydrogenase factor in a stable complex. The membrane component was inactivated by preincubating soluble transhydrogenase factor-depleted membranes at temperatures above 45 degrees. NADP+, NADPH, or Mg2+ ions, but neither NAD+ nor NADH, protected against inactivation. These studies indicate that (a) the binding of NADP+ or NADPH to the membrane factor promotes a conformational alteration in the protein such that its themostability and susceptibility to proteolysis are increased, and (b) the inhibitory Mg2+ ion-binding site resides in the membrane component.  相似文献   

16.
D C Phelps  Y Hatefi 《Biochemistry》1984,23(26):6340-6344
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the mitochondrial energy-linked nicotinamidenucleotide transhydrogenase (TH). Our studies [Phelps, D.C., & Hatefi, Y. (1981) J. Biol. Chem. 256, 8217-8221; Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480] suggested that the inhibition site of DCCD is near the NAD(H) binding site, because NAD(H) and competitive inhibitors protected TH against inhibition by DCCD and, unlike the unmodified TH, the DCCD-modified TH did not bind to NAD-agarose. Others [Pennington, R.M., & Fisher, R.R. (1981) J. Biol. Chem. 256, 8963-8969] could not demonstrate protection by NADH, obtained data indicating DCCD inhibits proton translocation by TH much more than hydride ion transfer from NADPH to 3-acetylpyridine adenine dinucleotide (AcPyAD), and concluded that DCCD modifies an essential residue in the proton channel of TH. The present studies show that N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) also inhibits TH. The inhibition is pseudo first order at several EEDQ concentrations, and the reaction order with respect to [EEDQ] is unity, suggesting that inhibition involves the interaction of one molecule of EEDQ with one active unit of TH. The EEDQ-modified TH reacts covalently with [3H]aniline, suggesting that the residue modified by EEDQ is a carboxyl group. More significantly, it has been shown that the absorbance change of oxonol VI at 630 minus 603 nm is a reliable reporter of TH-induced membrane potential formation in submitochondrial particles and that TH-catalyzed hydride ion transfer from NADPH to AcPyAD and the membrane potential induced by this reaction are inhibited in parallel by either DCCD or EEDQ.  相似文献   

17.
NADH treatment of complex I at pH 7–8 results in the appearance of electron paramagnetic resonance (epr) signals at x band due to reduced ironsulfur centers 1, 2, 3 and 4, while NADPH treatment gives rise to the appearance of signals due to centers 2 and 3. Similar results are obtained with complex I preparations in which transhydrogenase activity from NADPH to NAD has been >95% inhibited by treatment of the complex with trypsin. At pH 6.5 and in the presence of rotenone, addition of NADPH to complex I or transhydrogenase-inhibited complex I results in partial reduction of iron-sulfur center 1 as well. These and other experiments with reduced 3-acetylpyridine adenine dinucleotide and NADPH + NAD as substrates have suggested that the differences in the reduction of complex I iron-sulfur centers by the above nucleotides are essentially quantitative and related to (a) the dehydrogenation rate of the nucleotides, and (b) autoxidation of complex I components under the epr experimental conditions.  相似文献   

18.
The Rhodospirillum rubrum pyridine dinucleotide transhydrogenase system is comprised of a membrane-bound component and an easily dissociable soluble factor. Active transhydrogenase complex was solubilized by extraction of chromatophores with lysolecithin. The membrane component was also extracted from membranes depleted of soluble factor. The solubilized membrane component reconstituted transhydrogenase activity upon addition of soluble factor. Various other ionic and non-ionic detergents, including Triton X-100, Lubrol WX, deoxycholate, and digitonin, were ineffectual for solubilization and/or inhibited the enzyme at higher concentrations. The solubilized membrane component was significantly less thermal stable than the membrane-bound component. None of the pyridine dinucleotide substrate affected the thermostability of the solubilized membrane-bound component, whereas NADP+ and NADPH afforded protection to membrane-bound component. NADPH stimulated trypsin inactivation of membrane-bound component to a greater extent than NADP+, but inactivation of solubilized membrane component was stimulated to the same extent by both pyridine dinucleotides. The solubilized membrane component appears to have a slightly higher affinity for soluble factor than does the membrane-bound component.Abbreviations AcPyAD+ oxidized 3-acetylpyridine adenine dinucleotide - BChl bacteriochlorophyll - CT-particles chromatophores depleted of soluble transhydrogenase factor and devoid of transhydrogenase activity This work was supported by Grant GM 22070 from the National Institutes of Health, United States Public Health Service. Paper I of this series is R. R. Fisher et al. (1975)  相似文献   

19.
A unique Trp residue in the recombinant dIII component of transhydrogenase from human heart mitochondria (hsdIII), and an equivalent Trp engineered into the dIII component of Rhodospirillum rubrum transhydrogenase (rrdIII.D155W), are more fluorescent when NADP(+) is bound to the proteins, than when NADPH is bound. We have used this to determine the occupancy of the binding site during transhydrogenation reactions catalysed by mixtures of recombinant dI from the R. rubrum enzyme and either hsdIII or rrdIII.D155W. The standard redox potential of NADP(+)/NADPH bound to the dIII proteins is some 60-70 mV higher than that in free solution. This results in favoured reduction of NADP(+) by NADH at the catalytic site, and supports the view that changes in affinity at the nucleotide-binding site of dIII are central to the mechanism by which transhydrogenase is coupled to proton translocation across the membrane.  相似文献   

20.
Inside-out submitochondrial particles from both potato tubers and pea leaves catalyze the transfer of hydride equivalents from NADPH to NAD(+) as monitored with a substrate-regenerating system. The NAD(+) analogue acetylpyridine adenine dinucleotide is also reduced by NADPH and incomplete inhibition by the complex I inhibitor diphenyleneiodonium (DPI) indicates that two enzymes are involved in this reaction. Gel-filtration chromatography of solubilized mitochondrial membrane complexes confirms that the DPI-sensitive TH activity is due to NADH-ubiquinone oxidoreductase (EC 1.6.5.3, complex I), whereas the DPI-insensitive activity is due to a separate enzyme eluting around 220 kDa. The DPI-insensitive TH activity is specific for the 4B proton on NADH, whereas there is no indication of a 4A-specific activity characteristic of a mammalian-type energy-linked TH. The DPI-insensitive TH may be similar to the soluble type of transhydrogenase found in, e.g., Pseudomonas. The presence of non-energy-linked TH activities directly coupling the matrix NAD(H) and NADP(H) pools will have important consequences for the regulation of NADP-linked processes in plant mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号