首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
在水蔗草花序发育时期对花序喷施0.05g/L 2,4-D后.对水蔗草的花粉育性、结实率和无融合生殖的频率进行研究,结果表明:用0.05g/L 2,4-D处理,花粉育性和结实率与对照均没有明显的差异;无融合生殖的频率比对照显著下降。  相似文献   

2.
设置6个光照时间梯度和两个光照强度梯度,分别对3种(基因型)果蝇进行光照处理,结果显示:在5001ux光照强度下,光照处理3h/d的果蝇发生量最少,其他各光照时间果蝇发生量无显著差异;1000lux光照强度下,不同光照时间果蝇发生量差异不显著,而不同基因型果蝇间表现出显著差异;连续光照处理使黑檀体果蝇后代数明显减少。  相似文献   

3.
延长光照时间对烟草叶片生长发育及光合特性的影响   总被引:5,自引:0,他引:5  
以烤烟品种‘云烟87’为材料,采用夜间人工补光的方式,以自然光照时间为对照,设置增加1h、2h和3h光照3个处理,研究延长光照时间对烟草生长发育、叶绿素含量及光合作用、叶绿素荧光参数和光响应曲线的影响。结果表明:(1)与对照相比,延长光照时间2h处理下烟株叶长、叶宽、株高显著增加,1h、3h处理影响不显著。(2)延长光照处理显著降低比叶面积,提高叶片叶绿素a、b、叶绿素a+b、类胡萝卜素含量,但1h、3h处理的变化幅度小于2h处理。(3)延长光照时间1h和2h处理下叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)显著升高,3h处理影响不大;延长光照处理显著提高了PSⅡ最大光化学量子效率(Fv/Fm)、PSⅡ实际光化学量子效率(ΦPSⅡ)、光化学淬灭系数(qP),降低了非光化学淬灭系数(NPQ),其中2h处理影响幅度最大,但对初始荧光强度F0影响不显著;延长光照处理下烟草叶片的最大净光合速率(Pmax)和光饱和点(Isat)均升高,但光补偿点(Ic)没有明显的变化。研究表明,适当延长光照时间有利于叶片生长发育和干物质积累,提高叶绿素含量,促进光合作用,缓解光抑制现象,充分利用光能,提高叶片光合同化效率。  相似文献   

4.
龙须草花粉活性及结实率与其无融合生殖的关系   总被引:3,自引:0,他引:3  
以两种生态型无融合生殖龙须草为材料,经去雄套袋、去掉柱头及相互杂交等处理,比较几种方式下的结实率。结果表明:去雄套袋、截去柱头以破坏授粉和杂交授粉等处理与去雄不套袋作对照之间结实率的差异不显著。两种生态型龙须草的成熟花粉粒都具有活力,在蔗糖溶液中的离体萌发率分别为28%和34%;花粉在柱头上的附着和生长的荧光观察表明:花粉附着率较低,花粉在柱头上可以萌发,但不能进入柱头和花柱。证明龙须草花粉对其结实率没有显著影响;龙须草具有很高的无融合生殖度,是优良的无融合生殖基因供体。  相似文献   

5.
以具有低温不育、高温可育特性的温光敏细胞核雄性不育小麦C412S和C404S为材料,以其回交转育亲本、育性正常的C412和C404为对照,用人工气候箱研究了光照强度对温光敏细胞核雄性不育小麦育性表达的影响。结果表明,在低温条件下(日温8℃/夜温6℃),C412S和C404S在不同光照强度(160μmol/m2.s和300μmol/m.2s)下自交结实率都为0,表现为完全不育。在较高温度条件下(日温18℃/夜温14℃),从花粉母细胞形成期到开花期的光照处理,C412S在160μmol/m.2s弱光照下的自交结实率仅为5.4%,表现为高不育,在300μmol/m2.s较强光照下的自交结实率高达65.0%,表现为高度可育;而另一不育系C404S在2种光照强度下的自交结实率分别为69.9%和73.2%,都达到了高度可育水平。表明光照强度对温光敏细胞核雄性不育小麦的雄性育性表达具有重要影响,但不同材料对光照强度的响应程度有所差异。  相似文献   

6.
光敏核不育水稻短日照植株的雄性器官和育性异常   总被引:3,自引:0,他引:3  
张锐  宋家祥 《Acta Botanica Sinica》1999,41(12):1317-1322
采用形态学方法比较观察了 10个水稻 (OryzasatavaL .)雄性核不育系的雄性器官的发育状况 :1)雄性核不育系短日照植株的自交结实率和花粉可育度均显著低于对照 ;2 )程度不同地存在花药开裂和散粉障碍 ,有多寡不等的柱头无任何花粉附着 ,且附着在不育系柱头上的花粉萌发力弱 ;3)胚囊发育状况及异交结实率均未见异常。说明光敏核不育水稻短日照植株自交结实率低下乃因雄性核不育基因表达所致。  相似文献   

7.
该研究选取六个多年生苦荞新品系,对春季、秋季直播与秋季再生其主要农艺性状进行调查。结果表明:(1)不同播种季节对多年生苦荞新品系主花序的花粉可育率、总结实率、有效结实率、植株株高、主茎粗、主茎分枝数、主茎节数、籽粒百粒重、单株粒数、单株产量的影响均达到显著或极显著水平;秋播主花序花粉可育率、总结实率、有效结实率、植株主茎分枝数、籽粒百粒重、单株粒数、单株产量均极显著高于春播;植株株高、主茎粗、主茎节数均极显著低于春播;主花序花朵大小、籽粒种子长宽比无显著差异。(2)不同种植方式对主花序花粉可育率、有效结实率、植株主茎节数及籽粒百粒重的影响达到显著或极显著水平;秋季再生主花序花粉可育率、籽粒单株粒数显著高于秋季直播;主花序有效结实率、植株主茎粗、主茎节数、籽粒百粒重显著低于秋季直播;主花序花朵大小、总结实率、植株株高、主茎分枝数、籽粒种子长宽比、单株产量无显著差异;相关分析表明,各生长季节下主花序有效结实率及单株粒数与单株产量的相关系数均最高。(3)所有参试品系中,1612-241秋季直播的单株产量显著高于其他品系; 1612-16、1612-33秋季再生单株产量较正季优势显著。该研究结果有助于筛选出适宜一季播种两季收获的优良品系,为今后多年生苦荞的选择育种提供线索基础。  相似文献   

8.
高州普通野生稻主要生殖性状的数理统计分析   总被引:1,自引:1,他引:0  
高州野生稻各采样点的生殖特性表现出明显的多样性。对141份野生稻的花粉育性、裂药指数、胚囊育性和结实率进行通径分析。结果表明,花粉育性、裂药指数和胚囊育性决定了结实率变异的61.17%,其中裂药指数对结实率的直接作用最大,通径系数为0.6495;花粉育性和胚囊育性对结实率的直接作用较小,通径系数分别为0.2356和0.2137,花粉育性通过裂药指数还有较大的间接通径系数(0.2960)。通过系统聚类,将高州普通野生稻分为4群,并时各群进行方差分析和邓肯氏多重比较,可归纳为:Ⅰ群的花粉育性、胚囊育性和裂药指数对结实率影响小;Ⅱ群主要由胚囊育性影响结实率;Ⅲ群主要由裂药指数影响结实率;Ⅳ群主要由花粉育性和裂药指数共同影响结实率。  相似文献   

9.
七子花的繁殖生物学研究   总被引:16,自引:0,他引:16  
对国家2级保护植物七子花(Heptacodium miconioides)的开花、传粉与结实等繁殖特性进行了研究。结果显示:七子花的花无梗,由多轮紧缩呈头状的聚伞花序组成顶生圆锥花序,多数花序开两轮花(基轮和中轮),少数只开基轮花。自花传粉的比例高,花后4h的柱头花粉多超过60粒,8h的柱头可多达142粒,其中近1/3的花粉萌发,少数能到达子房。每个子房仅1枚胚珠可育,其平均结实率为40.6%,上轮花的开花会影响下轮花的结实率,降低幅度可达34.8%,早开花的结实也会影响迟开花的结实。表明七子花的结实率很低,资源限制是影响结实的主要因素。  相似文献   

10.
运用透射电子显微镜技术,对甜菜无融合生殖单体附加系M14的小孢子发生、雄配子体发育以及相应的花药壁发育过程进行超微结构的观察研究,以阐明甜菜无融合生殖单体附加系M14花粉发生与发育超微结构特点以及花粉败育的时期和败育的细胞学特征.结果显示:(1)小孢子母细胞减数分裂正常,分裂期间细胞质具有明显的"细胞质改组"现象,主要表现在核糖体减少,质体、线粒体的结构发生规律性的变化,有利于孢子体向配子体的转变.M14减数分裂的胞质分裂为同时型,前期Ⅱ和中期Ⅱ形成"细胞器带";正常发育的花粉,小孢子分裂形成营养细胞和生殖细胞;生殖细胞脱离花粉壁,生殖细胞游离于营养细胞的细胞质中,最初具细胞壁,而后消失,且生殖细胞壁成分与花粉内壁成分相似.(2)三细胞型的成熟花粉含有一个营养细胞和两个具有尾突的精子;每个精子通过两层质膜与营养细胞隔开,含有一个大的精核,长尾突内含少量的细胞质以及纤丝状结构.(3)生殖细胞和精子中缺乏质体.(4)花粉的败育起始于小孢子,大部分受阻于单核-二细胞花粉期,其败育特征为花粉内液泡吞噬作用导致细胞器解体,绒毡层细胞过早解体或肥大生长致使营养供应受阻,可能是导致单核-二细胞花粉败育的主要细胞学原因.研究表明,白花甜菜第九号染色体的附加可能是导致M14大量花粉败育的遗传学因素.  相似文献   

11.
Under natural environmental conditions, sea bass feeding rhythms are nocturnal in winter and diurnal the rest of the year. In this paper we describe the effect of contracting and expanding photoperiods and two skeleton photoperiods (SP) on the dual feeding rhythms of sea bass ( Dicentrarchus labrax L. ). To this end, twelve animals were held individually with access to self-feeders. First, the lights on and lights off were progressively delayed and advanced respectively by one hour in group 1 (G1), and conversely in group 2 (G2), so that the fish were exposed from a light/dark (LD) 12L:12D cycle to 2:22 LD (G1) and DL (G2) cycles and finally 0.25:23.75 LD (G1) and DL (G2). In the second experiment two SP's were used involving two light pulses separated by 12 hours, each pulse lasting 0.25 hours during the first two weeks and one hour during the succeeding two weeks. The results showed that diurnal and nocturnal sea bass tended to confine their feeding phase following the contraction of the LD cycle. Both SP's failed to simulate a complete photoperiod. In conclusion, the LD cycle appeared to drive the daily feeding rhythms but, the photoperiod length did not itself control the inversions of nocturnal and diurnal fish, so that other factors, in addition to photoperiod, may be involved in the control of the annual rhythms of phase inversions in sea bass.  相似文献   

12.
Under natural environmental conditions, sea bass feeding rhythms are nocturnal in winter and diurnal the rest of the year. In this paper we describe the effect of contracting and expanding photoperiods and two skeleton photoperiods (SP) on the dual feeding rhythms of sea bass (Dicentrarchus labrax L.). To this end, twelve animals were held individually with access to self-feeders. First, the lights on and lights off were progressively delayed and advanced respectively by one hour in group 1 (G1), and conversely in group 2 (G2), so that the fish were exposed from a light/dark (LD) 12L:12D cycle to 2:22 LD (G1) and DL (G2) cycles and finally 0.25:23.75 LD (G1) and DL (G2). In the second experiment two SP's were used involving two light pulses separated by 12 hours, each pulse lasting 0.25 hours during the first two weeks and one hour during the succeeding two weeks. The results showed that diurnal and nocturnal sea bass tended to confine their feeding phase following the contraction of the LD cycle. Both SP's failed to simulate a complete photoperiod. In conclusion, the LD cycle appeared to drive the daily feeding rhythms but, the photoperiod length did not itself control the inversions of nocturnal and diurnal fish, so that other factors, in addition to photoperiod, may be involved in the control of the annual rhythms of phase inversions in sea bass.  相似文献   

13.
Agnès Reyss  Robert Bourdu 《Planta》1971,97(3):230-244
Summary We have described some characteristics of Lolium multiflorum cultivated under very short photoperiods (2 hours and 1 hour). The estimations of leaf growth were based on dry weight, surface measurements, and chlorophyll content. The pigment analyses were carried out by column chromatography; chloroplast ultrastructure was observed after chemical fixation.These measurements have permitted us to note a sharp drop in the growth curve of plants grown under different day-lengths: the limiting photoperiod lies between 1 hour and 2 hours of daily illumination.Pigment analyses and chloroplast ultrastructure observations show that there is a greater difference between plants cultivated under 1 hour and 2 hours of daily illumination than between plants cultivated under 2 hours and 12 hours.A decrease in day-length causes a deficit in the chlorophyll b content as well as a poor development of the grana.We have attempted to correlate these structural anomalies with the abnormal chlorophyll a/chlorophyll b ratio.  相似文献   

14.
Morgan PW  Guy LW  Pao CI 《Plant physiology》1987,83(2):448-450
Asynchronous thermo- and photoperiods were observed to hasten floral differentiation (initiation) in the short day plant Sorghum bicolor (L.) Moench. Shifting the 12 hour thermoperiod forward 0.5 or 2.5 hours hastened floral initiation compared to controls with synchronous thermo-and photoperiods. Delaying the day-night temperature change until 2.5 hours after either the dark-light or light-dark transition also hastened floral initiation. Inasmuch as sorghum milo-type maturity genotypes containing the genes designated Ma1Ma2 (class I) were most responsive to asynchrony of the thermo- and photoperiods while those containing ma3R (class III) were not responsive, the maturity genes appear to control the plant's response to both photoperiod and temperature. Gibberellic acid promoted the effect of thermo- and photoperiod asynchrony on floral initiation. The results suggest that in sorghum both temperature and photoperiod may act as phase setting signals in what has previously been termed photoperiodism.  相似文献   

15.
Growth and dormancy as affected by photoperiod and temperature have been studied in Norway spruce ecotypes of different latitudinal and altitudinal origin. First-year seedlings were used. In all ecotypes apical growth cessation and terminal bud formation occurred within 2 weeks after exposure to SD at temperatures of 18 to 24°C. At lower temperatures or at near-critical photoperiods the response was delayed. The critical photoperiod for apical growth cessation varied from 21 hours in ecotype Steinkjer, Norway (64°N) to about 15 hours in ecotype Lankowitz, Austria (47°04′N). High-elevation ecotypes also had longer critical pholoperiods than low-elevation ecotypes from the same latitude. A detectable growth depression resulted from as little as 1 or 2 SDs of 10 hours, and with 4 or more SDs apical growth cessation took place. In contrast to the situation in the shoot, root growth was not affected by photoperiod. Accordingly, the top:root ratio is drastically affected by photoperiod. The critical photoperiod for cambial growth was shorter than that for apical growth in all ecotypes and cambial growth cessation was delayed for several weeks compared with cessation of apical growth. A transition to formation of late-wood tracheids with thick walls and narrow lumens took place upon exposure to SD. The photoperiodic effects were significantly modified by temperature, but the critical photoperiods were only slightly changed by temperature in the range of 12 to 24°C. However, a 10-hour “night” at 4°C caused growth cessation in continuous light in four ecotypes tested. Temperature optimum for apical growth under non-limiting photoperiods (24 hours) was 21°C in all ecotypes, but with little difference among 18,21 and 24°C. The Q10 for apical growth was 3.5 in the temperature range 12 to 18°C. The growth potential as determined in 24-hour photoperiods was not significantly different among the various ecotypes except for one northern eco-type which was clearly inferior to the others. However, the growth of ecotype Steinkjer (64°N) was greatly suppressed even by the long midsummer days at 59°40′N, thus demonstrating the misleading impression one gets of the growth potential of northern ecotypes when they are moved southwards.  相似文献   

16.
Piringer , A. A., and H. A. Borthwick . (U.S.D.A., Beltsville, Md.) Effects of photoperiod and kind of supplemental light on growth, flowering and stem fasciation of Celosia. Amer. Jour. Bot. 48(7): 588–592. Illus. 1961.—Four cultivars of Celosia argentea L. var. cristata were grown on photoperiods ranging from 8 hr to continuous light. Supplemental low-intensity incandescent light was used to extend 8 hr of natural light and provide the given photoperiod. In all cultivars, short main stems occurred on photoperiods of 12 or fewer hours and long main stems, due to more nodes, on photoperiods of 16 or more hours. Flowering was a nonobligate short-day response in all cultivars. Plants of certain cultivars tended to have shorter stems and flower later when 8 hr of fluorescent instead of incandescent light was used to provide the 16-hr photoperiod. In 3 of the cultivars studied, photoperiods of 16 or more hours induced marked stem fasciation.  相似文献   

17.
Brine shrimp, Artemia, exhibit two modes of reproduction: oviparity (diapause cyst production) and ovoviviparity (live larvae release). Environmental conditions determining these developmental routes are poorly understood, so we investigated the effects of photoperiod and temperature on reproductive mode. Nauplii of A. franciscana were hatched from cysts produced in the Great Salt Lake, Utah, and raised in 2% natural sea salt water under photoperiods of 24, 14, 12, or 10 h at 28 degrees or 20 degrees C. Mating pairs of mature shrimp were isolated and reared continuously under those conditions. The mode of reproduction shown by each pair was determined daily throughout their life span, and found to be greatly affected by photoperiod, and less influenced by temperature. The relative degree of oviparity increased as the photoperiod became shorter at both temperatures. In contrast, the degree of ovoviviparity was higher as the photoperiod became longer at both temperatures. The critical photoperiod appears to be between 12 and 14 h. For all photoperiods examined, the degree of oviparity was higher at 28 degrees C than at 20 degrees C, whereas the degree of ovoviviparity was greater at 20 degrees C than at 28 degrees C.  相似文献   

18.
The optimal temperature and illumination photoperiod requirements for the phototrophic growth of a novel microplantlet suspension culture derived from the macrophytic marine red alga Agardhiella subulata were determined. The optimal growth temperature was 24 degrees C. The effects of illumination light-dark (LD) photoperiod (hour of light:hours of darkness within a 24 h cycle) on biomass production was studied within a bubble-column photobioreactor. The 4.5 cm diameter photobioreactor was maintained at near-saturation conditions with respect to light flux (38 mciromol photons m(-2) s(-1)), nutrient medium delivery (20% nutrient replacement per day), and CO(2) delivery (0.35 mmol CO(2) L(-1) h(-1)) so that the cumulative effects of photodamage on the cell density versus time curve at photoperiods approaching continuous light could be observed. Biomass production was maximized at 16:8 LD, where biomass densities exceeding 3.6 g dry cell mass L(-1) were achieved after 60 days in culture. Biomass production was proportional to photoperiod at low fractional photoperiods (< or =10:14 LD), but high fractional photoperiods approaching continuous light (> or = 20:4 LD) shut down biomass production. Biomass production versus time profiles under resource-saturated cultivation conditions were adequately described by a cumulative photodamage growth model, which coupled reversible photodamage processes to the specific growth rate. Under light-saturated growth conditions, the rate constant for photodamage was kd = 1.17 +/- 0.28 day(-1) (+/-1.0 SE), and the rate constant for photodamage repair was kr = 5.12 +/- 0.95 day(-1) (+/-1.0 SE) at 24 degrees C.  相似文献   

19.
The critical dark period requirement for flowering of Impatiens balsamina L. cv. Rose, an obligate short day plant, is about 8.5 hours. While GA3 completely substituted for the dark period requirement, Phosfon prolonged it to 9.5 hours. GA3 hastened and Phosfon delayed the initiation of floral buds under all photoperiods. Floral buds opened into flowers only during 8 and 14 hour photoperiods in control and Phosfon-treated plants but during all photoperiods in GA3-treated ones. The delay in floral bud initiation and flowering was correlated with shifting up of the node bearing the first floral bud and flower respectively. While GA3 increased the numher of floral buds and flowers in all photoperiods except 8-hour, Phosfon increased their number in the 14-hour photoperiod only. The number of flowering plants decreased with increasing photoperiod regardless of GA3 and Phosfon application. The effect of Phosfon was completely or partially overcome, depending upon the photoperiod, by simultaneous application of GA3.  相似文献   

20.
Seasonal changes in pulsatile luteinizing hormone (LH) secretion in ovariectomized ewes were examined over the course of 2 yr in relation to annual changes in environmental photoperiod, shifts in response to estradiol negative feedback control of LH secretion, and timing of the breeding season. Under natural environmental conditions, the frequency of LH pulses in individual ovariectomized ewes changed gradually and in close association with the annual cycle of day length. As days became shorter in late summer and autumn, LH pulse frequency increased; conversely, as day length increased in late winter and spring, frequency declined. Under artificial conditions in which ovariectomized ewes were exposed to different photoperiods, a similar inverse relationship was observed between day length and LH pulse frequency. The seasonal changes in frequency of LH pulses in ovariectomized ewes, although symmetric with the annual photoperiodic cycle, were not temporally coupled to the dramatic shifts in response to estradiol feedback inhibition of LH secretion at the transitions between breeding season and anestrus. The feedback shifts occurred abruptly and at times when LH pulse frequency in ovariectomized ewes was at, or near, the annual maximum or minimum. The tight coupling between LH pulse frequency and photoperiod leads to the conclusion that there is a photoperiodic drive to the LH pulse-generating system of the ewe. The temporal dissociation between changes in this photoperiodic drive and the seasonal shifts in response to estradiol negative feedback support the hypothesis that the neuroendocrine basis for these two phenomena is not one and the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号