首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dye-decolorizing peroxidases (DyPs) are able to cleave bulky anthraquinone dyes. The recently published crystal structure of AauDyPI reveals that a direct oxidation in the distal heme cavity can be excluded for most DyP substrates. It is shown that a surface-exposed tyrosine residue acts as a substrate interaction site for bulky substrates. This amino acid is conserved in eucaryotic DyPs but is missing in the structurally related chlorite dismutases (Clds). Dye-decolorizing peroxidases of procaryotic origin equally possess a conserved tyrosine in the same region of the polypeptide albeit not at the homologous position.  相似文献   

2.
A conserved catalytic residue in the ubiquitin-conjugating enzyme family   总被引:8,自引:0,他引:8  
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor.  相似文献   

3.
Kim TJ  Mitsutake S  Kato M  Igarashi Y 《FEBS letters》2005,579(20):4383-4388
Ceramide kinase (CERK) converts ceramide (Cer) to ceramide-1-phosphate (C1P), a newly recognized bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. However, little is known regarding the functional roles of this domain in CERK. In this study, we have demonstrated that the PH domain of CERK is essential for its enzyme activity. Using site-directed mutagenesis, we have further determined that Leu10 in the PH domain has an important role in CERK activity. Replacing this residue with a neutral alanine or isoleucine, caused a dramatic decrease in CERK activity to 1% and 29%, respectively, compared to CERK, but had no effect on substrate affinity. The study presented here suggests that the PH domain of CERK is not only indispensable for its activity but also act as a regulator of CERK activity.  相似文献   

4.
The ComX pheromone is an isoprenoidal oligopeptide containing a modified tryptophan residue, which stimulates natural genetic competence in gram-positive bacteria, Bacillus. We have reported the structure of the ComXRO-E-2 pheromone, which is produced by the RO-E-2 strain of Bacillus subtilis. ComXRO-E-2 analogs with substituted amino acids and isoprenoid modified tryptophan residues (e.g., prenyl, geranyl, and farnesyl), were synthesized and examined for biological activity. These results indicate that Phe-Trp(Ger)-NH2 is the minimum pharmacophore of the ComXRO-E-2 pheromone. Furthermore, the length of the isoprenoid moiety (i.e., modification style), and the presence of double bonds, are crucial for biological activity. The modification style of the ComX pheromone is more important than the peptide sequence with respect to biological activity.  相似文献   

5.
We initially aligned 28 different cellulase sequences in pairwise fashion and found half of them have the sequence -Asn-Glu-Pro- located in a region flanked by hydrophobic-rich amino acids. Based on lysozyme as a model, the glutamate residue could be essential for enzyme function. We tested this possibility by site-directed mutagenesis of the genes coding Bacillus polymyxa and Bacillus subtilis endo-beta-1,4-glucanases. The genes and amino acid sequences of these two enzymes show very little similarity. Change of Glu-194 and Glu-169 to the isosteric glutamine form in these respective enzymes resulted in a dramatic loss of CMCase activity which could be restored by reverse mutation. Similar mutations to less-conserved residues, Glu-72 and Glu-147, of the B. subtilis enzyme did not cause any loss of activity.  相似文献   

6.
Gaucher disease, an autosomal recessive disorder, is caused by a deficiency of glucocerebrosidase (GCase) enzyme, a peripheral membrane-associated glycoprotein that hydrolyses glucosylceramide in lysosomes. Glycosylation is essential for the development of a catalytically active enzyme, specifically in the first site, located at Asn19. However, both the molecular basis of the relevance of N-glycosylation over GCase activity and the effects of glycosylation over its structure and dynamics are still not fully understood. Thus, the present work evaluated GCase enzyme in increasing glycosylation content using triplicate unbiased molecular dynamics simulations. Accordingly, the N-linked glycan chains caused local conformational stabilization effects over the protein, as well as in regions flanking the enzyme catalytic dyad. In the case of the Asn19-linked glycan, it also occurred around region 438–444, where one of the most prevalent GCase mutations is found. Markedly, an increasing catalytic dyad organization was related to increasing glycosylation contents, offering the first atomic-level explanation for the experimental observation that GCase activity is controlled by glycosylation, especially at Asn19.  相似文献   

7.
Protein O-mannosylation is an essential modification in fungi and mammals. It is initiated at the endoplasmic reticulum by a conserved family of dolichyl phosphate mannose-dependent protein O-mannosyltransferases (PMTs). PMTs are integral membrane proteins with two hydrophilic loops (loops 1 and 5) facing the endoplasmic reticulum lumen. Formation of dimeric PMT complexes is crucial for mannosyltransferase activity, but the direct cause is not known to date. In bakers' yeast, O-mannosylation is catalyzed largely by heterodimeric Pmt1p-Pmt2p and homodimeric Pmt4p complexes. To further characterize Pmt1p-Pmt2p complexes, we developed a photoaffinity probe based on the artificial mannosyl acceptor substrate Tyr-Ala-Thr-Ala-Val. The photoreactive probe was preferentially cross-linked to Pmt1p, and deletion of the loop 1 (but not loop 5) region abolished this interaction. Analysis of Pmt1p loop 1 mutants revealed that especially Glu-78 is crucial for binding of the photoreactive probe. Glu-78 belongs to an Asp-Glu motif that is highly conserved among PMTs. We further demonstrate that single amino acid substitutions in this motif completely abolish activity of Pmt4p complexes. In contrast, both acidic residues need to be exchanged to eliminate activity of Pmt1p-Pmt2p complexes. On the basis of our data, we propose that the loop 1 regions of dimeric complexes form part of the catalytic site.  相似文献   

8.
Ghanem M  Gadda G 《Biochemistry》2005,44(3):893-904
The oxidation of alcohols to aldehydes is catalyzed by a number of flavin-dependent enzymes, which have been grouped in the glucose-methanol-choline oxidoreductase enzyme superfamily. These enzymes exhibit little sequence similarity in their substrates binding domains, but share a highly conserved catalytic site, suggesting a similar activation mechanism for the oxidation of their substrates. In this study, the fully conserved histidine residue at position 466 of choline oxidase was replaced with an alanine residue by site-directed mutagenesis and the biochemical, spectroscopic, and mechanistic properties of the resulting CHO-H466A mutant enzyme were characterized. CHO-H466A showed k(cat) and k(cat)/K(m) values with choline as substrate that were 60- and 1000-fold lower than the values for the wild-type enzyme, while the k(cat)/K(m) value for oxygen was unaffected, suggesting the involvement of His(466) in the oxidation of the alcohol substrate but not in the reduction of oxygen. Replacement of His(466) with alanine significantly affected the microenvironment of the flavin, as indicated by the altered behavior of CHO-H466A with sulfite and dithionite. In agreement with this conclusion, a midpoint reduction potential of +106 mV for the two-electron transfer in the catalytically competent enzyme-product complex was determined at pH 7 for CHO-H466A, which was approximately 25 mV more negative than that of the wild-type enzyme. Enzymatic activity in CHO-H466A could be partially rescued with exogenous imidazolium, but not imidazole, consistent with the protonated form of histidine exerting a catalytic role. pH profiles for glycine betaine inhibition, the deprotonation of the N(3)-flavin locus, and the k(cat)/K(m) value for choline all showed a significant shift upward in their pK(a) values, consistent with a change in the polarity of the active site. Finally, kinetic isotope effects with isotopically labeled substrate and solvent indicated that the histidine to alanine substitution affected the timing of substrate OH and CH bond cleavages, consistent with removal of the hydroxyl proton being concerted with hydride transfer in the mutant enzyme. All taken together, the results presented in this study suggest that in choline oxidase, His(466) modulates the electrophilicity of the enzyme-bound flavin and the polarity of the active site, and contributes to the stabilization of the transition state for the oxidation of choline to betaine aldehyde.  相似文献   

9.
Previous reports have demonstrated that aconitase has a single reactive sulfhydryl at or near the active site (Johnson, P. G., Waheed, A., Jones, L., Glaid, A. J., and Gawron, O. (1977) Biochem. Biophys. Res. Commun. 74, 384-389). On the basis of experiments with phenacyl bromide in which enzyme activity was abolished while substrate afforded protection, it was concluded that this group was an essential sulfhydryl. We have further examined the reactivity of this group and confirmed the result that, when reagents with bulky groups (e.g. N-ethylmaleimide or phenacyl bromide) modify the protein at the reactive sulfhydryl, activity is lost. However, when smaller groups, e.g. the SCH3 from methylmethanethiosulfonate or the CH2CONH2 from iodoacetamide, are introduced, there is only partial (50%) or no loss of activity. Experiments were performed to obtain evidence that these reagents are modifying the same residue. Methylmethanethio-sulfonate-treated enzyme showed an increase in the Km for citrate from 200 to 330 microM. EPR spectra were taken of the reduced N-ethylmaleimide- and iodoacetamide-modified enzyme in the presence of substrate. The former gave a spectrum typical of the substrate-free enzyme, while the spectrum of the latter was identical to enzyme with bound substrate. We, therefore, conclude that modification of this sulfhydryl affects activity by interfering with the binding of substrate to the active site and is not essential in the catalytic process.  相似文献   

10.
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.  相似文献   

11.
Point and regional centromeres specify a unique site on each chromosome for kinetochore assembly. The point centromere in budding yeast is a unique 150-bp DNA sequence, which supports a kinetochore with only one microtubule attachment. In contrast, regional centromeres are complex in architecture, can be up to 5 Mb in length, and typically support many kinetochore-microtubule attachments. We used quantitative fluorescence microscopy to count the number of core structural kinetochore protein complexes at the regional centromeres in fission yeast and Candida albicans. We find that the number of CENP-A nucleosomes at these centromeres reflects the number of kinetochore-microtubule attachments instead of their length. The numbers of kinetochore protein complexes per microtubule attachment are nearly identical to the numbers in a budding yeast kinetochore. These findings reveal that kinetochores with multiple microtubule attachments are mainly built by repeating a conserved structural subunit that is equivalent to a single microtubule attachment site.  相似文献   

12.
Alpha-sarcin, a cyclizing ribonuclease secreted by the mould Aspergillus giganteus, is one of the best characterized members of a family of fungal ribotoxins. This protein induces apoptosis in tumour cells due to its highly specific activity on ribosomes. Fungal ribotoxins display a three-dimensional protein fold similar to those of a larger group of microbial noncytotoxic RNases, represented by RNases T1 and U2. This similarity involves the three catalytic residues and also the Arg121 residue, whose counterpart in RNase T1, Arg77, is located in the vicinity of the substrate phosphate moiety although its potential functional role is not known. In this work, Arg121 of alpha-sarcin has been replaced by Gln or Lys. These two mutations do not modify the conformation of the protein but abolish the ribosome-inactivating activity of alpha-sarcin. In addition, the loss of the positive charge at that position produces dramatic changes on the interaction of alpha-sarcin with phospholipid membranes. It is concluded that Arg121 is a crucial residue for the characteristic cytotoxicity of alpha-sarcin and presumably of the other fungal ribotoxins.  相似文献   

13.
The active site residue Asn-437 in protein R1 of the Escherichia coli ribonucleotide reductase makes a hydrogen bond to the 2'-OH group of the substrate. To elucidate its role(s) during catalysis, Asn-437 was engineered by site-directed mutagenesis to several other side chains (Ala, Ser, Asp, Gln). All mutant proteins were incapable of enzymatic turnover but promoted rapid protein R2 tyrosyl radical decay in the presence of the k(cat) inhibitor 2'-azido-2'-deoxy-CDP with similar decay rate constants as the wild-type R1. These results show that all Asn-437 mutants can perform 3'-H abstraction, the first substrate-related step in the reaction mechanism. The most interesting observation was that three of the mutant proteins (N437A/S/D) behaved as suicidal enzymes by catalyzing a rapid tyrosyl radical decay also in reaction mixtures containing the natural substrate CDP. The suicidal CDP-dependent reaction was interpreted to suggest elimination of the substrate's protonated 2'-OH group in the form of water, a step that has been proposed to drive the 3'-H abstraction step. A furanone-related chromophore was formed in the N437D reaction, which is indicative of stalling of the reaction mechanism at the reduction step. We conclude that Asn-437 is essential for catalysis but not for 3'-H abstraction. We propose that the suicidal N437A, N437S, and N437D mutants can also catalyze the water elimination step, whereas the inert N437Q mutant cannot. Our results suggest that Asn-437, apart from hydrogen bonding to the substrate, also participates in the reduction steps of catalysis by class I ribonucleotide reductase.  相似文献   

14.
RPE65 is the isomerohydrolase essential for regeneration of 11-cis retinal, the chromophore of visual pigments. Here we compared the impacts of two mutations in RPE65, E417Q identified in patients with Leber congenital amaurosis (LCA), and E417D on isomerohydrolase activity. Although both mutations decreased the stability of RPE65 and altered its sub-cellular localization, E417Q abolished isomerohydrolase activity whereas the E417D mutant retained partial enzymatic activity suggesting that the negative charge of E417 is important for RPE65 catalytic activity. Loss of charge at this position may represent a mechanism by which the E417Q mutation causes blindness in LCA patients.  相似文献   

15.
In Archaea, splicing endonuclease (EndA) recognizes and cleaves precursor RNAs to remove introns. Currently, EndAs are classified into three families according to their subunit structures: homotetramer, homodimer, and heterotetramer. The crenarchaeal heterotetrameric EndAs can be further classified into two subfamilies based on the size of the structural subunit. Subfamily A possesses a structural subunit similar in size to the catalytic subunit, whereas subfamily B possesses a structural subunit significantly smaller than the catalytic subunit. Previously, we solved the crystal structure of an EndA from Pyrobaculum aerophilum. The endonuclease was classified into subfamily B, and the structure revealed that the enzyme lacks an N-terminal subdomain in the structural subunit. However, no structural information is available for crenarchaeal heterotetrameric EndAs that are predicted to belong to subfamily A. Here, we report the crystal structure of the EndA from Aeropyrum pernix, which is predicted to belong to subfamily A. The enzyme possesses the N-terminal subdomain in the structural subunit, revealing that the two subfamilies of heterotetrameric EndAs are structurally distinct. EndA from A. pernix also possesses an extra loop region that is characteristic of crenarchaeal EndAs. Our mutational study revealed that the conserved lysine residue in the loop is important for endonuclease activity. Furthermore, the sequence characteristics of the loops and the positions towards the substrate RNA according to a docking model prompted us to propose that crenarchaea-specific loops and an extra amino acid sequence at the catalytic loop of nanoarchaeal EndA are derived by independent convergent evolution and function for recognizing noncanonical bulge-helix-bulge motif RNAs as substrates.  相似文献   

16.
ATP-binding cassette (ABC) proteins constitute one of the widest families in all organisms, whose P-glycoprotein involved in resistance of cancer cells to chemotherapy is an archetype member. Although three-dimensional structures of several nucleotide-binding domains of ABC proteins are now available, the catalytic mechanism triggering the functioning of these proteins still remains elusive. In particular, it has been postulated that ATP hydrolysis proceeds via an acid-base mechanism catalyzed by the Glu residue adjacent to the Walker-B motif (Geourjon, C., Orelle, C., Steinfels, E., Blanchet, C., Deléage, G., Di Pietro, A., and Jault, J. M. (2001) Trends Biochem. Sci. 26, 539-544), but the involvement of such residue as the catalytic base in ABC transporters was recently questioned (Sauna, Z. E., Muller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry, 41, 13989-14000). The equivalent glutamate residue (Glu504) of a half-ABC transporter involved in multidrug resistance in Bacillus subtilis, BmrA (formerly known as YvcC), was therefore mutated to Asp, Ala, Gln, Ser, and Cys residues. All these mutants were fully devoid of ATPase activity, yet they showed a high level of vanadate-independent trapping of 8-N3-alpha-32P-labeled nucleotide(s), following preincubation with 8-N3-[alpha-32P]ATP. However, and in contrast to the wild-type enzyme, the use of 8-N3-[gamma-32P]ATP unequivocally showed that all the mutants trapped exclusively the triphosphate form of the analogue, suggesting that they were not able to perform even a single hydrolytic turnover. These results demonstrate that Glu504 is the catalytic base for ATP hydrolysis in BmrA, and it is proposed that equivalent glutamate residues in other ABC transporters play the same role.  相似文献   

17.
Walus M  Kida E  Wisniewski KE  Golabek AA 《FEBS letters》2005,579(6):1383-1388
Tripeptidyl-peptidase I (TPP I) is a lysosomal aminopeptidase that sequentially removes tripeptides from small polypeptides and also shows a minor endoprotease activity. Mutations in TPP I are associated with a fatal lysosomal storage disorder--the classic late-infantile form of neuronal ceroid lipofuscinoses. In the present study, we analyzed the catalytic mechanism of the human enzyme by using a site-directed mutagenesis. We demonstrate that apart from previously identified Ser475 and Asp360, also Glu272, Asp276, and Asp327 are important for catalytic activity of the enzyme. Involvement of serine, glutamic acid, and aspartic acid in the catalytic reaction validates the idea, formulated on the basis of significant amino acid sequence homology and inhibition studies, that TPP I is the first mammalian representative of a growing family of serine-carboxyl peptidases.  相似文献   

18.
Plants use UDP-arabinofuranose (UDP-Araf) to donate Araf residues in the biosynthesis of Araf-containing complex carbohydrates. UDP-Araf itself is formed from UDP-arabinopyranose (UDP-Arap) by UDP-arabinopyranose mutase (UAM). However, the mechanism by which this enzyme catalyzes the interconversion of UDP-Arap and UDP-Araf has not been determined. To gain insight into this reaction, functionally recombinant rUAMs were reacted with UDP-Glc or UDP-Araf. The glycosylated recombinant UAMs were fragmented with trypsin, and the glycopeptides formed were then identified and sequenced by LC-MS/MS. The results of these experiments, together with site-directed mutagenesis studies, suggest that in functional UAMs an arginyl residue is reversibly glycosylated with a single glycosyl residue, and that this residue is required for mutase activity. We also provide evidence that a DXD motif is required for catalytic activity.  相似文献   

19.
《The Journal of cell biology》1994,126(6):1445-1453
Ezrin, previously also known as cytovillin, p81, and 80K, is a cytoplasmic protein enriched in microvilli and other cell surface structures. Ezrin is postulated to have a membrane-cytoskeleton linker role. Recent findings have also revealed that the NH2-terminal domain of ezrin is associated with the plasma membrane and the COOH-terminal domain with the cytoskeleton (Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. J. Cell Biol. 120: 129-139). Using bacterially expressed fragments of ezrin we now demonstrate that ezrin has an actin-binding capability. We used glutathione-S-transferase fusion proteins of truncated ezrin in affinity chromatography to bind actin from the cell extract or purified rabbit muscle actin. We detected a binding site for filamentous actin that was localized to the COOH-terminal 34 amino acids of ezrin. No binding of monomeric actin was detected in the assay. The region corresponding to the COOH- terminal actin-binding site in ezrin is highly conserved in moesin, actin-capping protein radixin and EM10 protein of E. multilocularis, but not in merlin/schwannomin. Consequently, this site is a potential actin-binding site also in the other members of the protein family. Furthermore, the actin-binding site in ezrin shows sequence homology to the actin-binding site in the COOH terminus of the beta subunit of the actin-capping protein CapZ and one of the potential actin-binding sites in myosin heavy chain. The actin-binding capability of ezrin supports its proposed role as a membrane-cytoskeleton linker.  相似文献   

20.
To probe the role of the Asp-99 ... His-48 pair in phospholipase A2 (PLA2) catalysis, the X-ray structure and kinetic characterization of the mutant Asp-99-->Asn-99 (D99N) of bovine pancreatic PLA2 was undertaken. Crystals of D99N belong to the trigonal space group P3(1)21 and were isomorphous to the wild type (WT) (Noel JP et al., 1991, Biochemistry 30:11801-11811). The 1.9-A X-ray structure of the mutant showed that the carbonyl group of Asn-99 side chain is hydrogen bonded to His-48 in the same way as that of Asp-99 in the WT, thus retaining the tautomeric form of His-48 and the function of the enzyme. The NH2 group of Asn-99 points away from His-48. In contrast, in the D102N mutant of the protease enzyme trypsin, the NH2 group of Asn-102 is hydrogen bonded to His-57 resulting in the inactive tautomeric form and hence the loss of enzymatic activity. Although the geometry of the catalytic triad in the PLA2 mutant remains the same as in the WT, we were surprised that the conserved structural water, linking the catalytic site with the ammonium group of Ala-1 of the interfacial site, was ejected by the proximity of the NH2 group of Asn-99. The NH2 group now forms a direct hydrogen bond with the carbonyl group of Ala-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号