首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-Smooth muscle actin is one of the molecular markers for a phenotype of vascular smooth muscle cells, because the actin is a major isoform expressed in vascular smooth muscle cells and its expression is upregulated during differentiation. Here, we first demonstrate that the phenotype-dependent expression of this actin in visceral smooth muscles is quite opposite to that in vascular smooth muscles. This actin isoform is not expressed in adult chicken visceral smooth muscles including gizzard, trachea, and intestine except for the inner layer of intestinal muscle layers, whereas its expression is clearly detected in these visceral smooth muscles at early stages of the embryo (10-day-old embryo) and is developmentally downregulated. In cultured gizzard smooth muscle cells maintaining a differentiated phenotype, alpha-smooth muscle actin is not detected while its expression dramatically increases during serum-induced dedifferentiation. Promoter analysis reveals that a sequence (-238 to -219) in the promoter region of this actin gene acts as a novel negative cis-element. In conclusion, the phenotype-dependent expression of alpha-smooth muscle actin would be regulated by the sum of the cooperative contributions of the negative element and well-characterized positive elements, purine-rich motif, and CArG boxes and their respective transacting factors.  相似文献   

2.
The endoderm of the oesophagus, proventriculus, gizzard or small intestine of the 5-day-old chick or quail embryo was cultivated in combination with homologous or heterologous mesenchyme on a WxxxOLFFyyy and HxxxAFFHNyyy medium for 7 to 21 days or on the chorio-allantoic membrane (CAM) for 8 days. With homologous mesenchyme the epithelium always differentiated homotypically. In association with heterologous mesenchyme, the differentiation of the epithelium was both homotypical and heterotypical depending on the region of the digestive tract. The oesophagus and small intestine differentiate mainly homotypically both in culture and on CAM, but the gizzard and proventriculus show heterotypic differentiation particularly on CAM. Thus, the endoderm of the digestive tract of the 5-day-old chick or quail embryo, though rather "determined", still reacts to the heterologous stimuli of the mesenchyme to some degree.  相似文献   

3.
Smooth muscle cell containing organs (bladder, heart, blood vessels) are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs) can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF) suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain) as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.  相似文献   

4.
It is well established that epithelial-mesenchymal interactions play important roles in the differentiation of stomach epithelial cells in the chicken embryo. To analyze mesenchymal influences on the differentiation of the epithelial cells, we developed a tissue culture system for stomach (proventriculus and gizzard) epithelia of chicken embryo, and examined their differentiation in the presence or absence of mesenchyme. Stomach epithelium from 6-day chicken embryo did not express embryonic chicken pepsinogen (ECPg), a marker molecule of glandular epithelial cells of proventriculus, while it expressed marker molecules of epithelial cells of the luminal surface of stomach, when cultured alone on the Millipore filter, covered with the gel consisting of extracellular matrix components. When the epithelium was recombined with mesenchyme separated by the filter, differentiation of the epithelium was affected by the recombined mesenchyme. Proventricular and lung mesenchymes induced the expression of ECPg in epithelial cells, and the expression was extensive when the gel contained basement membrane components. Proventricular and gizzard epithelia showed different responses to the mesenchymal action. We tested the effects of some growth factors on the differentiation of epithelial cells using this culture system. Furthermore we devised a "conditioned semi-solid medium experiment" for analysis of the inductive properties of proventricular and lung mesenchymes. The results of this experiment clearly demonstrated for the first time that diffusible factors from mesenchyme induce the differentiation of glandular epithelial cells in the absence of mesenchymal cells.  相似文献   

5.
Dissociation and reassociation experiments were carried out to study the inductive ability of mesenchyme of the oesophagus, gizzard and intestine of the chicken embryo, using 3-day-old quail embryonic allantoic endoderm as an effector tissue. The mesenchyme of the oesophagus and gizzard possesses inductive ability until the Ilth day of incubation. Thereafter, it no longer has inductive influence upon the allantoic endoderm. The intestinal mesenchyme was favourable to differentiation of allantoic endoderm into intestinal epithelium even on the I5th day of incubation. In all types of recombination tested, goblet cells differentiated among allantoic endodermal cells.  相似文献   

6.
In monocytes and macrophages, activation of the tyrosine kinase Syk is an essential step in the biochemical cascade linking aggregation of receptors for immunoglobulin G (FcgammaR) to initiation of effector functions. An increase in Syk activation during differentiation of myeloid cells by different agents has been reported. We studied the activation state of Syk in response to FcgammaRII crosslinking in monocytic cells before and after in vitro differentiation with 1alpha, 25-dihydroxy-vitamin D3. We show here that while in undifferentiated THP-1 cells clustering of FcgammaRII induces significant phosphorylation and activation of Syk, in THP-1 cells differentiated in vitro by 1alpha, 25-dihydroxy-vitamin D3, FcgammaRII crosslinking induced a decrease in Syk activity. In vitro differentiation did not induce changes in the expression of FcgammaRII isoforms. The observed effect on Syk activation though FcgammaRII could be mediated by differentiation-induced changes in the expression and basal activation level of Syk, as well as changes in the association of Syk with the tyrosine phosphatase SHP-1. These results suggest that the biochemical signaling pathways induced by FcgammaRII could be dependent on the differentiation state of the cell.  相似文献   

7.
An arginine-specific ADP-ribosyltransferase activity was detected in chicken gizzard smooth muscle, and the specific activity is highest in the membrane fraction. This transferase is released from the membrane fraction by phosphatidylinositol-specific phospholipase C (PI-PLC), suggesting that it is a glycosylphosphatidylinositol (GPI)-anchored protein. When primary cultured gizzard smooth muscle cells (SMCs) were incubated with [adenylate-(32)P]NAD, several proteins were labeled. The labeling was inhibited by preincubation of the cells with PI-PLC, or by the addition of L-arginine to the reaction, and was sensitive to hydroxylamine treatment. The activity of the transferase was maintained in differentiated SMCs cultured with insulin, but was dramatically decreased concomitantly with cell dedifferentiation induced by serum or a specific PI3-kinase inhibitor, LY294002. These results indicate that the GPI-anchored arginine-specific ADP-ribosyltransferase is expressed on the surface of differentiated SMCs and can modify several cell surface proteins. Our results also suggest that PI3-kinase is involved in the regulation of transferase activity during differentiation.  相似文献   

8.
In this study, we have examined the spatiotemporal distribution of the alpha 1 integrin subunit, a putative laminin and collagen receptor, in avian embryos, using immunofluorescence microscopy and immunoblotting techniques. We used an antibody raised against a gizzard 175 x 10(3) M(r) membrane protein which was described previously and which we found to be immunologically identical to the chicken alpha 1 integrin subunit. In adult avian tissues, alpha 1 integrin exhibited a very restricted pattern of expression; it was detected only in smooth muscle and in capillary endothelial cells. In the developing embryo, alpha 1 integrin subunit expression was discovered in addition to smooth muscle and capillary endothelial cells, transiently, in both central and peripheral nervous systems and in striated muscles, in association with laminin and collagen IV. alpha 1 integrin was practically absent from most epithelial tissues, including the liver, pancreas and kidney tubules, and was weakly expressed by tissues that were not associated with laminin and collagen IV. In the nervous system, alpha 1 integrin subunit expression occurred predominantly at the time of early neuronal differentiation. During skeletal muscle development, alpha 1 integrin was expressed on myogenic precursors, during myoblast migration, and in differentiating myotubes. alpha 1 integrin disappeared from skeletal muscle cells as they became contractile. In visceral and vascular smooth muscles, alpha 1 integrin appeared specifically during early smooth muscle cell differentiation and, later, was permanently expressed after cell maturation. These results indicate that (i) the expression pattern of alpha 1 integrin is consistent with a function as a laminin/collagen IV receptor; (ii) during avian development, expression of the alpha 1 integrin subunit is spatially and temporally regulated; (iii) during myogenesis and neurogenesis, expression of alpha 1 integrin is transient and correlates with cell migration and differentiation.  相似文献   

9.
10.
The purpose of this study is to characterize the smooth muscle differentiation of purified human muscle‐derived cells (hMDCs). The isolation and purification of hMDCs were conducted by modified preplate technique and Dynal CD34 cell selection. Smooth muscle cell differentiation was induced by the use of smooth muscle induction medium (SMIM) and low‐serum medium. The gene expressions at the mRNA and protein levels of undifferentiated and differentiated hMDCs were tested by RT‐PCR, Western blot and immunofluorescence studies. Western blot and immunofluorescence studies demonstrated the purified hMDCs cultured in SMIM for 4 weeks and expressed significant amount of smooth muscle myosin heavy chain (MHC) and α‐smooth muscle actin (ASMA). The cells cultured in low‐serum medium for 4 weeks also expressed ASMA, while the control group did not. RT‐PCR analysis showed increased gene expression of smooth muscle markers, such as ASMA, Calponin, SM22, Caldesmon, Smoothelin and MHC when purified hMDCs were exposed to SMIM for 2 and 4 weeks when compared to the controls. In conclusion, we confirmed the smooth muscle differentiation capability of purified hMDCs. The gene expression of smooth muscle differentiation of purified hMDCs was characterized. These cells may be potential biomaterials for human tissue regeneration.  相似文献   

11.
12.
Chicken gizzard extract promoted a long and radially directed neurite outgrowth from retinal explants of 8-day-old chick embryo in cultures of 2–3 days. The neurite outgrowth from retinal explants cultured in the absence of gizzard extract was short and restricted to the explant perimeter. The neurite outgrowth promoted by gizzard extract depended strictly on several factors. (a) Fetal calf serum and polycationic substratum were required in this culture system, (b) Pretreatment of the polyornithine-coated substratum with gizzard extract allowed the retinal explants to extend neurites even in the absence of gizzard extract in the medium. (c) Maximal neurite outgrowth was observed in retinal explants dissected from 8-day embryos, but thereafter the explants’response to gizzard extract rapidly declined and was almost lost at the 12th day. As a biochemical parameter of differentiation of cultured neuroretina, uptake systems for neurotransmitter candidates were examined in homogenates of retinal explants cultured in the absence or presence of gizzard extract. After 3 days in culture with gizzard extract, the uptake increased for aspartate and glutamate 1.6- to 1.8-fold and for γ-aminobutyric acid to a lesser degree when examined at a concentration for high-affinity uptake (10-6M). In contrast, the uptake capacity for glycine, choline, and dopamine was not altered in explants cultured with or without gizzard extract. Kinetic analysis showed that the enhanced capacity to accumulate aspartate was not due to an alteration of Km, but to an increase of Vmax. The results suggest that one or several factors in chick gizzard muscle promote not only neurite outgrowth but also the aspartate-glutamate uptake systems in the developing neuroretina, probably related to ganglion cells.  相似文献   

13.
A strain of axolotl, Ambystoma mexicanum, that carries the cardiac lethal or c gene presents an excellent model system in which to study inductive interactions during heart development. Embryos homozygous for gene c contain hearts that fail to beat and do not form sarcomeric myofibrils even though muscle proteins are present. Although they can survive for approximately three weeks, mutant embryos inevitably die due to lack of circulation. Embryonic axolotl hearts can be maintained easily in organ culture using only Holtfreter's solution as a culture medium. Mutant hearts can be induced to differentiate in vitro into functional cardiac muscle containing sarcomeric myofibrils by coculturing the mutant heart tube with anterior endoderm from a normal embryo. The induction of muscle differentiation can also be mediated through organ culture of mutant heart tubes in medium 'conditioned' by normal anterior endoderm. Ribonuclease was shown to abolish the ability of endoderm-conditioned medium to induce cardiac muscle differentiation. The addition of RNA extracted from normal early embryonic anterior endoderm to organ cultures of mutant hearts stimulated the differentiation of these tissues into contractile cardiac muscle containing well-organized sarcomeric myofibrils, while RNA extracted from early embryonic liver or neural tube did not induce either muscular contraction or myofibrillogenesis. Thus, RNA from anterior endoderm of normal embryos induces myofibrillogenesis and the development of contractile activity in mutant hearts, thereby correcting the genetic defect.  相似文献   

14.
The control of gene expression during terminal myogenesis was explored in heterokaryons between differentiated and undifferentiated myogenic cells by analyzing the formation of species specific myosin light chains of chick and rat skeletal muscle. Dividing L6 rat myoblasts served as the biochemically undifferentiated parent. The differentiated parental cells were mononucleated muscle cells (myocytes) that were obtained from primary cultures of embryonic chick thigh muscle by blocking myotube formation with EGTA and later incubating the postimitotic cells in cytochalasin B. Heterokaryons were isolated by the selective rescue of fusion products between cells previously treated with lethal doses of different cell poisons. 95-99% pure populations of heterokaryons formed between undifferentiated rat myoblasts and differentiated chick myocytes were obtained. The cells were labeled with [35S]methionine, and whole cell extracts were analyzed on two-dimensional polyacrylamide gels. These heterokaryons synthesize the light chain of chick myosin and both embryonic and adult light chains of rat skeletal myosin. Control homokaryons formed by fusing undifferentiated cells to themselves did not synthesize skeletal myosin light chains. Control heterokaryons formed between undifferentiated rat myoblasts and chick fibroblasts also failed to synthesize myosin light chains. These results indicate that differentiated chick muscle cells provide some factor that induces L6 myoblasts to synthesize rat myosin light chains. This system provides a model for investigating the processes by which differentiated cell functions are induced.  相似文献   

15.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

16.
The efficacy of anticancer agents significantly depends on the differential susceptibility of undifferentiated cancer cells and differentiated normal cells to undergo apoptosis. We previously found that enhanced expression of RPS3a/nbl, which apparently encodes a ribosomal protein, seems to prime cells for apoptosis, while suppressing such enhanced expression triggers cell death. The present study found that HL-60 cells induced to differentiate by all-trans retinoic acid did not undergo apoptosis following treatment with actinomycin D whereas undifferentiated HL-60 cells were highly apoptosis-susceptible, confirming earlier suggestions that differentiated cells have diminished apoptosis-susceptibility. Undifferentiated HL-60 cells highly expressed RPS3a/nbl whereas all-trans retinoic acid -induced differentiated cells exhibited markedly reduced levels, suggesting that apoptosis-resistance of differentiated cells could be due to low RPS3a/nbl expression. Down-regulation of enhanced RPS3a/nbl expression was also observed in cells induced to differentiate with the retinoid 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1- propenyl]benzoic acid without any significant induction of cell death. While down-regulation of RPS3a/nbl expression during differentiation did not apparently induce apoptosis, RPS3a/nbl antisense oligomers triggered death of undifferentiated HL-60 cells, but not of retinoid-induced differentiated cells. It therefore seems that while down-regulation of enhanced RPS3a/nbl expression can induce apoptosis in undifferentiated cells, down-regulation of enhanced RPS3a/nbl expression during differentiation occurs independently of apoptosis, and could be regarded as reverting the primed condition to the unprimed (low RPS3a/nbl) state.  相似文献   

17.
Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.  相似文献   

18.
Cholinergic neuroblastoma NS20Y cells were differentiated by the chicken gizzard extract. They were first inoculated into a glass culture bottle and the aggregated cells which grew in the suspension culture were collected. The aggregated cells (round and immature neuroblastoma cells) were seeded on a polyornithinecoated plastic dish, and the effect of various agents on the differentiation of the neuroblastoma was investigated. When gizzard extract from chicken was added to the culture, many flat cells with neurites emerged around the cell aggregates within 24 h. The flat cells could evoke action potentials with high frequency (in 70% cells). Cyclic GMP levels in the treated cultures were much lower than that in the control culture, and remained continuously lower during 2 days culture. The factor responsible for the differentiation of neuroblastoma cells was rich in the chick gizzard among extracts or conditioned media from various tissues tested. A similar effect was observed by the addition of dibutyryl cyclic AMP or prostaglandin E1 plus theophylline over a slower time course. The factor in gizzard extract was trypsin-sensitive and heat-labile. The molecular size was estimated to be about 12 s.  相似文献   

19.
Abstract. Calponin and SM 22 are two proteins related in sequence that are particularly abundant in smooth muscle cells. Here, the distribution patterns of calponin and SM 22 were compared with that of other smooth muscle contractile and cytoskeletal components in the avian embryo using immunofluorescence microscopy and immunoblotting. Like myosin-light-chain kinase and heavy caldesmon, both calponin and SM 22 were more or less exclusively found in smooth muscle cells, during embryonic development and in the adult. Labelling of other cell types including striated muscle was not observed. In contrast, tropomyosin, smooth muscle α-actin, filamin and desmin could also be detected in many other cell types in addition to smooth muscles, at least during part of embryonic life. Calponin and SM 22 appeared almost synchronously during the differentiation of all smooth muscle cell populations, though with a slight time difference in the case of the aorta. The appearance of calponin, SM22 and heavy caldesmon was generally delayed in relation to desmin, tropomyosin, smooth muscle α-actin, myosin-light-chain kinase and filamin and a marked increase in abundance of these proteins was observed in the late embryo and in the adult. From these observations we can conclude that both calponin and SM 22 belong to a group of late differentiation determinants in smooth muscle and may constitute convenient and reliable markers to follow the differentiation of most, if not all, smooth muscle cell populations.  相似文献   

20.
Abstract: Antiserum against a neurite outgrowth factor (NOF) of gizzard extract that promotes neurite outgrowth from dissociated ciliary ganglionic neurons (CG neurons) of 8-day-old chick embryo was prepared to determine whether or not the antiserum inhibits neurite outgrowth from cultured neurons or explants of chick and murine tissues. When CG neurons were cultured on a polyornithine-coated well exposed to NOF (NOF-bound POR well), marked neurite outgrowth was observed. When NOF-bound POR wells were exposed to antiserum, neurite outgrowth from CG neurons was gradually inhibited with increasing amounts of antiserum, while exposure to preimmune serum did not prevent neurite outgrowth. Antiserum had no effect on neuronal survival during a 48-h incubation. The diluted antiserum, which produced nearly 100% inhibition of the NOF activity, was almost equally active in suppressing the activity of NOFs in conditioned media (CM) of various chick embryo tissues, but showed much less inhibitory effects on NOFs in CM of murine tissues. The appearance of neurites from explants of spinal cord, dorsal root ganglion, or retina of chick embryo was also inhibited by the antiserum. These results indicate that antiserum against NOF from gizzard extract suppressed the activity of NOFs from various sources, and that there are species differences in NOFs, at least between chick and murine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号