首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Karlsson RM  Holmes A 《Amino acids》2006,31(3):231-239
Summary. Galanin is a 29 amino-acid (30 in humans) neuropeptide with a close functional relationship with neurotransmitter systems implicated in the pathophysiology and treatment of depression and anxiety disorders. In rodent models of depression-related behavior, treatment with galanin or compounds with agonist actions at galanin receptors has been shown to affect depression-related behaviors and the behavioral and neurochemical effects of antidepressants. Treatment with clinically efficacious antidepressants alters galanin and galanin receptor gene expression in rodents. Rodent anxiety-like behaviors appear to be modulated by galanin in a complex manner, with studies showing either increases, decreases and no effects of galanin treatments and galanin mutations on anxiety-like behavior in various tasks. One concept to emerge from this literature is that galanin recruitment during extreme behavioral and physiological provocations such as stress and opiate withdrawal may serve to attenuate negative emotional states caused by noradrenergic hyperactivation. The specific galanin receptor subtypes mediating the anxiety- and depression-related effects of galanin remains to be determined, with evidence supporting a possible contribution of GalR1, GalR2 and GalR3. While our understanding of the role of galanin as a modulator of emotion remains at an early stage, recent progress in this rapidly evolving field raise possibility of that galanin may represent a target for the development of novel antidepressant and anxiolytic drug treatments.  相似文献   

3.
cAMP-dependent protein kinase A (PKA) signaling has a key role in memory processes and has been identified as a potential therapeutic target for memory disorders. The activation of PKA signaling is crucial for the consolidation of long-term memories dependent on the hippocampus and/or the amygdala, By contrast, initial studies indicate that cAMP-PKA activation might impair the working memory and executive functions of the prefrontal cortex. Furthermore, PKA activation in the nucleus accumbens might increase sensitivity to addiction. These complexities must be heeded when designing medications aimed at altering PKA activity. PKA might be most practical as a therapeutic target in disorders with global alterations in cAMP-PKA activity due to genetic or environmental factors.  相似文献   

4.
Reflecting its critical role in integrating cell growth and division with the cellular nutritional environment, the mammalian target of rapamycin *(mTOR) is a highly conserved downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway. mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1. As a consequence of inhibiting its downstream messengers, mTOR inhibitors prevent cyclin-dependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which may help cause GI phase arrest. Constitutive activation of the PI3K/Akt kinases occur in human leukemias. FLT3, VEGF, and BCR-ABL mediate their activities via mTOR. New rapamycin analogs including CCI-779, RAD001, and AP23573, are entering clinical studies for patients with hematologic malignancies.  相似文献   

5.
The therapeutic potential of ghrelin and synthetic ghrelin receptor (GRLN-R) agonists for the treatment of gastrointestinal (GI) motility disorders is based on their ability to stimulate coordinated patterns of propulsive GI motility. This review focuses on the latest findings that support the therapeutic potential of GRLN-R agonists for the treatment of GI motility disorders. The review highlights the preclinical and clinical prokinetic effects of ghrelin and a series of novel ghrelin mimetics to exert prokinetic effects on the GI tract. We build upon a series of excellent reviews to critically discuss the evidence that supports the potential of GRLN-R agonists to normalize GI motility in patients with GI hypomotility disorders such as gastroparesis, post-operative ileus (POI), idiopathic chronic constipation and functional bowel disorders.  相似文献   

6.
NF-kappaB as a therapeutic target in cancer   总被引:21,自引:0,他引:21  
  相似文献   

7.
Death associated protein kinase 1 (DAPK) is an important serine/theoreine kinase involved in various cellular processes such as apoptosis, autophagy and inflammation. DAPK expression and activity are misregulated in multiple diseases including cancer, neuronal death, stoke, et al. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. In this review, we summarize the pathological status and functional roles of DAPK in disease and compare the published reagents that can manipulate the expression or activity of DAPK. The pleiotropic functions of DAPK make it an intriguing target and the barriers and opportunities for targeting DAPK for future clinical application are discussed.  相似文献   

8.
The CD38 molecule is well represented on cell surfaces in many cases of a variety of lymphoid tumors, notably multiple myeloma, AIDS-associated lymphomas, and post-transplant lymphoproliferations. As such, this molecule is a promising target for antibody therapy. After early disappointments, improved anti-CD38 antibodies of strong cytolytic potential have been described by 3 groups. First, a human IgG monoclonal anti-CD38 antibody raised in mice transgenic for human Ig has been found to induce potent complement and cellular cytotoxicities against both myeloma cell lines and fresh harvests from myeloma marrow and leukemic blood. This antibody also exhibits the singular property of inhibiting the CD38 cyclase activity. Second, a series of CD38-specific human antibodies, with high affinities and high ADCC activities against cell lines and primary cultures of myeloma, has been selected from a unique phage-display library. Finally, to enhance specificity for myeloma cells, bispecific domain antibodies targeting both CD38 and CD138 have been developed. As they lack any Fc module, these constructs rely on cytotoxicity for delivering a toxin to tumor cells. The list of candidate CD38-bearing neoplasms as targets for these antibody constructs can now be expanded to include acute promyelocytic leukemia, and possibly other myeloid leukemias, in which surface CD38 can be induced by retinoid treatment. One caveat here is that evidence has been produced to suggest that CD38 promotes pulmonary manifestations of the hazardous retinoic acid syndrome.  相似文献   

9.
Dihydrofolate reductase as a therapeutic target   总被引:9,自引:0,他引:9  
The folate antagonists are an important class of therapeutic compounds, as evidenced by their use as antiinfective, antineoplastic, and antiinflammatory drugs. Thus far, all of the clinically useful drugs of this class have been inhibitors of dihydrofolate reductase (DHFR), a key enzyme in the synthesis of thymidylate, and therefore, of DNA. The basis of the antiinfective selectivity of these compounds is clear; the antifolates trimethoprim and pyrimethamine are potent inhibitors of bacterial and protozoal DHFRs, respectively, but are only weak inhibitors of mammalian DHFRs. These species-selective agents apparently exploit the differences in the active site regions of the parasite and host enzymes. Methotrexate is the DHFR inhibitor used most often in a clinical setting as an anticancer drug and as an antiinflammatory and immunosuppressive agent. Considerable progress has been made recently in understanding the biochemical basis for the selectivity of this drug and the biochemical mechanism (or mechanisms) responsible for the development of resistance to treatment with the drug. This understanding has led to a new generation of DHFR inhibitors that are now in clinical trials.  相似文献   

10.
Human neurodegenerative illnesses such as Alzheimer's disease and Creutzfeldt-Jakob disease exact an enormous cost on individuals, families and society. For these and related disorders, current treatment is largely symptomatic without influencing the underlying disease process. Until recently, the development of immunotherapeutic approaches to neurodegenerative disorders had been almost completely ignored despite growing successes against other non-infectious diseases such as cancer. However, since Schenk and colleagues described the antibody-mediated clearance of amyloid plaques in a transgenic mouse model of Alzheimer's disease, a number of studies have confirmed the feasibility of this strategy for several neurodegenerative disorders including Huntington's disease and prion diseases. These reports offer the exciting prospect that either the immune system or its derivative components can be harnessed to fight the misfolded and/or aggregated proteins that accumulate in many neurodegenerative illnesses. If the remarkable power of clonal expansion, specificity and efficiency of the immune system can successfully inactivate these abnormal proteins, real hope exists that effective immunotherapeutic treatments for neurodegenerative illnesses may be available in the near future.  相似文献   

11.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common form of cancer worldwide. One frequent alteration found in this type of cancer is overactivation of the PI3K/PTEN/mTOR pathway, of which protein kinase B (PKB)/Akt is a central key element, controlling important cellular processes such as metabolism, cell size, proliferation and apoptosis, ultimately regulating cell growth and survival. Thus, drugs that target Akt directly or elements of the pathway are plausible candidates for cancer treatment. Accordingly, numerous clinical trials in various phases are being performed for these drugs. In this review, we discuss the tumorigenic capacity of Akt and focus on its role in HNSCC, paying special attention to the current efforts in treating this cancer in a more specific, Akt-targeted way, based on its primordial role in this type of cancer.  相似文献   

12.
13.
Cigarette/tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress are intimately associated with the progression and exacerbation of chronic obstructive pulmonary disease (COPD). Therefore, targeting systemic and local oxidative stress with antioxidants/redox modulating agents, or boosting the endogenous levels of antioxidants are likely to have beneficial effects in the treatment/management of COPD. Various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine), have been reported to modulate various cellular and biochemical aspects of COPD. These antioxidants have been found to scavenge and detoxify free radicals and oxidants, regulate of glutathione biosynthesis, control nuclear factor-kappaB (NF-kappaB) activation, and hence inhibiting inflammatory gene expression. Synthetic molecules, such as specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, iNOS and myeloperoxidase inhibitors, lipid peroxidation inhibitors/blockers edaravone, and lazaroids/tirilazad have also been shown to have beneficial effects by inhibiting cigarette smoke-induced inflammatory responses and other carbonyl/oxidative stress-induced cellular alterations. A variety of oxidants, free radicals, and carbonyls/aldehydes are implicated in the pathogenesis of COPD, it is therefore, possible that therapeutic administration or supplementation of multiple antioxidants and/or boosting the endogenous levels of antioxidants will be beneficial in the treatment of COPD. This review discusses various novel pharmacological approaches adopted to enhance lung antioxidant levels, and various emerging beneficial and/or prophylactic effects of antioxidant therapeutics in halting or intervening the progression of COPD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

14.
The macrophage foam cell as a target for therapeutic intervention   总被引:27,自引:0,他引:27  
Li AC  Glass CK 《Nature medicine》2002,8(11):1235-1242
  相似文献   

15.
16.
17.
Korade Z  Mirnics K 《Neuron》2011,71(6):955-957
Progranulin mutations result in frontotemporal dementia, but the underlying pathophysiology has remained largely unexplained. New data by Geschwind and colleagues in this issue of Neuron uncovered that the Wnt/FZD2 signaling pathway is an early and critical contributor to disease pathology.  相似文献   

18.
Cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases, including rheumatoid arthritis (RA). Increasing evidence has revealed the importance of IL-23, which closely resembles IL-12 structurally and immunologically, in linking innate and adaptive immunity. IL-23, a newly identified heterodimeric pro-inflammatory cytokine, is composed of a p40 subunit in common with IL-12 and a unique p19 subunit. Recent evidence suggests that IL-23, rather than IL-12, is the crucial factor in the pathogenesis of various immune-mediated disorders. In addition, recent studies have explored the role of IL-23 in patients with RA. An elevated expression of IL-23 has been demonstrated in the synovial fibroblasts and plasma of patients with RA. Moreover, an association between IL-23 and IL-23R polymorphisms with susceptibility to RA has been reported. Therefore, the targeting of IL-23 or the IL-23 receptor has been proposed as a potential therapeutic approach for RA. In this review we will discuss the biological features of IL-23, and summarize recent advances in our understanding of the role of IL-23 in the pathogenesis and treatment of RA.  相似文献   

19.
Shuttling of specific proteins out of the nucleus is essential for the regulation of the cell cycle and proliferation of both normal and malignant tissues. Dysregulation of this fundamental process may affect many other important cellular processes such as tumor growth, inflammatory response, cell cycle, and apoptosis. It is known that XPO1 (Exportin-1/Chromosome Region Maintenance 1/CRM1) is the main mediator of nuclear export in many cell types. Nuclear proteins exported to the cytoplasm by XPO1 include the drug targets topoisomerase IIα (topo IIα) and BCR-ABL and tumor suppressor proteins such as Rb, APC, p53, p21, and p27. XPO1 can mediate cell proliferation through several pathways: (i) the sub-cellular localization of NES-containing oncogenes and tumor suppressor proteins, (ii) the control of the mitotic apparatus and chromosome segregation, and (iii) the maintenance of nuclear and chromosomal structures. The XPO1 protein is elevated in ovarian carcinoma, glioma, osteosarcoma, pancreatic and cervical cancer. There is a growing body of research indicating that XPO1 may have an important role as a prognostic marker in solid tumors. Because of this, nuclear export inhibition through XPO1 is a potential target for therapeutic intervention in many cancers. The best understood XPO1 inhibitors are the small molecule nuclear export inhibitors (NEIs; Leptomycin B and derivatives, ratjadones, PKF050-638, valtrate, ACA, CBS9106, selinexor/KPT-330, and verdinexor/KPT-335). Selinexor and verdinexor are orally bioavailable, highly potent, small molecules that are classified as Selective Inhibitors of Nuclear Export (SINE). KPT-330 is the only NEI currently in Phase I/II human clinical trials in hematological and solid cancers. Of all the potential targets in nuclear cytoplasmic transport, the nuclear export receptor XPO1 remains the best understood and most advanced therapeutic target for the treatment of cancer.  相似文献   

20.
Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号