首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gram-positive bacteria are recognized pathogens in urinary tract infections. Lipoteichoic acids, major components of the cell wall of gram-positive bacteria, are important virulence attributes, but their mechanism of action is not well understood. We have postulated that infection-induced altered function of progenitors of urothelial cells (UT) residing in the basal layer is likely to have long-lasting effects on the architecture and function of the urothelium. Our earlier in vitro studies in UT of basal type, grown under growth restricting conditions, have shown that (1) treatment with lipoteichoic acid from Streptococcus faecalis (LT-2) stimulates a subpopulation of progenitors of urothelial cells to proliferate, and (2) resulting large colonies differentiated at an increased rate under conditions simulating those in the basal layer of the urothelium. The hypothesis underlying the present studies was that nitric oxide (NO) mediated LT-2 action on these functions of UT. Immunocytochemical studies using an antibody against inducible nitric oxide synthase (iNOS) confirmed expression of iNOS in LT-2-treated UT. Our hypothesis was tested by treating UT grown under growth restricting conditions (0.005% bovine pituitary extract) with LT-2 (25 μg/ml), in the presence or absence of inhibitors of NOS (1 mM NG-nitro-L-arginine methyl ester [L-NAME]; 1 μM dexamethasone [DEXA]) or 25 μM hemoglobin, a potent inactivator of NO. Treatment with LT-2 in the presence of these agents prevented the following effects of LT-2 alone: (1) the stimulatory effect on proliferation of single cells, as well as within the resulting large colonies; (2) the subsequent differentiation of large colonies resulting from this proliferative activity, as indicated by distribution of β1 subunit-containing integrins to cell-cell contacts; (3) the inhibitory effect on the subsequent ability of LT-2-treated UT to attach to extracellular matrix proteins. These studies suggest that induction of NOS by LT-2, initially aimed at restricting the replication of infectious agents, may have potential cost of damage to the host bladder by interfering with urothelial differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Urinary tract infection with gram-positive bacteria is common. Avenues for ingress of bacteria into the bladder include luminal and suburothelial infection. Terminally differentiated superficial urothelial cells lining the lumen of the bladder are often shed in response to infection. In contrast, infection-induced altered function of progenitors of urothelial cells residing in the basal layer of the urothelium is likely to have long lasting effects on the structure and function of the urothelium. The main objective of the present studies was to investigate in vitro the possibility that exposure to lipoteichoic acid, a cell wall component of the gram-positive Streptococcus faecalis (LT-2), stimulates basal urothelial cells to proliferate. To simulate conditions that restrict proliferation and inhibit terminal differentiation of urothelial cells in the basal layer, secondary cultures of urothelial cells (UT) were grown on collagen or fibronectin-coated substrate in medium containing low levels of Ca2+ (0.2 mM) and growth factors (0.005% bovine pituitary extract [BPE]). Under these conditions, UT cultures displayed a highly reproducible colony size distribution, possibly due to the fact that colonies were progeny of basal cells with various proliferative potentials, retained in vitro. In cultures grown under growth-restricting conditions, the majority of progenitors appeared to be quiescent, just like stem cells in the basal layer of the urothelium. Thus, the population of large colonies (more than six cells/colony), was small when a steady state of growth was achieved, 3–7 days after seeding. Growth factors (0.005–0.5% BPE) caused a dose-dependent increase in this population of large colonies. Moreover, treatment of UT grown under growth-restricting conditions (0.005% BPE) with LT-2 increased steady-state levels of the population of large colonies to levels obtained in cultures growing under optimal conditions with respect to growth factors. These results indicated that the subpopulation of progenitors, quiescent under normal conditions, could be stimulated to proliferate. Two lines of evidence were consistent with the possibility that treatment with LT-2 stimulated proliferation of the subpopulation of progenitors and that large colonies were the progeny of this subpopulation of single cells: (1) treatment with LT-2 increased the percentage of single cells that incorporated bromodeoxyuridine (i.e., proliferated) in a time-dependent manner; (2) An increase in the percentage of large colonies was found following LT-2-triggered proliferation of single cells. We propose that, under normal conditions, cells produced in response to LT-2-triggered proliferation of stem cells are removed from the system due to an increased rate of differentiation followed by apoptosis. Recurrent infection and inflammation may not allow these processes to proceed effectively, resulting in chronic injury to the bladder. Moreover, under conditions in which stem cells accumulate mutations that incapacitate their progeny to undergo apoptosis, LT-triggered proliferation could be a contributing factor to tumorigenesis. © 1996 Wiley-Liss, Inc.  相似文献   

3.
NO produced by inducible NO synthase (iNOS) has been implicated in various pathophysiological processes including inflammation. Therefore, inhibitors of NO synthesis or iNOS gene expression have been considered as potential anti-inflammatory agents. We have previously demonstrated that heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) decreases proinflammatory cytokine IL-8 and NO production in cytokine-stimulated intestinal epithelial cells by interfering with the NF-kappaB signaling pathway. However, the upstream signaling mechanisms involved in these responses have not yet been defined. In this report, we show that in intestinal epithelial cells, HB-EGF triggered PI3K-dependent phosphorylation of Akt. Inhibition of PI3K reversed the ability of HB-EGF to block NF-kappaB activation, expression of iNOS, and NO production. Small interfering RNA of PI3K also reversed the inhibitory effect of HB-EGF on iNOS expression. Alternatively, transient expression of constitutively active PI3K decreased NO production by approximately 2-fold more than treatment with HB-EGF alone. This PI3K effect was HB-EGF dependent. Thus, activation of PI3K is essential but not sufficient for decreased NO synthesis. PI3K and HB-EGF act synergistically to decrease NO synthesis. Neither overexpression or inhibition of MEK, Ras, or Akt affected HB-EGF-mediated inhibition of NF-kappaB activation. These data demonstrate that HB-EGF decreases proinflammatory cytokine-stimulated NF-kappaB activation and NO production via activation of the PI3K signaling pathway. These results also suggest that inhibition of NF-kappaB and activation of the PI3K-dependent signaling cascade by HB-EGF may represent key signals responsible for the anti-inflammatory effects of HB-EGF.  相似文献   

4.
AIMS: In this work, we studied the mechanisms by which diphenyleneiodonium chloride (DPI) inhibits nitric oxide (NO) synthesis induced by the proinflammatory cytokine interleukin-1beta (IL-1) in bovine articular chondrocytes. To achieve this, we evaluated the ability of DPI to inhibit the expression and activity of the inducible isoform of the NO synthase (iNOS) induced by IL-1. We also studied the ability of DPI to prevent IL-1-induced NF-kappaB activation and reactive oxygen species (ROS) production. RESULTS: Northern and Western blot analysis, respectively, showed that DPI dose-dependently inhibited IL-1-induced iNOS mRNA and protein synthesis in primary cultures of bovine articular chondrocytes. DPI effectively inhibited NO production (IC50=0.03+/-0.004 microM), as evaluated by the method of Griess. Nuclear factor-kappa B (NF-kappaB) activation, as evaluated by electrophoretic mobility shift assay, was inhibited by DPI (1-10 microM) in a dose-dependent manner. IL-1-induced ROS production, as evaluated by measurement of dichlorofluorescein fluorescence, was inhibited by DPI at concentrations that also prevented NF-kappaB activation and iNOS expression. CONCLUSIONS: DPI inhibits IL-1-induced NO production in chondrocytes by two distinct mechanisms: (i) by inhibiting NOS activity, and (ii) by preventing iNOS expression through the blockade of NF-kappaB activation. These results also support the involvement of reactive oxygen species in IL-1-induced NF-kappaB activation and expression of NF-kappaB-dependent genes, such as iNOS.  相似文献   

5.
6.
Wang ZF  Tang XC 《FEBS letters》2007,581(4):596-602
The protective effects of huperzine A against oxygen-glucose deprivation (OGD)-induced injury in C6 cells were investigated. OGD for 6h and reoxygenation for 6h enhanced phosphorylation and degradation of IkappaBalpha and nuclear translocation of nuclear factor-kappa B (NF-kappaB), triggered overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nitric oxide (NO) in C6 cells. Along with inhibiting acetylcholinesterase activity, treatment with 1 microM huperzine A inhibited activation of NF-kappaB, attenuated iNOS, COX-2 and NO overexpression, and promoted survival in C6 cells subjected to OGD insult. The protective effects of huperzine A were partly mediated by "cholinergic anti-inflammatory pathway" through alpha7 nicotinic acetylcholine receptor.  相似文献   

7.
8.
Ca(2+) and Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN) have been known to play crucial roles in immune response and inflammation. Using mouse peritoneal macrophages and RAW 264.7 macrophage cells, we demonstrated that LPS mobilized intracellular free Ca(2+) and induced CN phosphatase activity. iNOS expression and NO secretion in response to LPS were suppressed by Ca(2+) antagonists (TMB-8, BAPTA/AM, and nifedipine) and CN inhibitor (cyclosporin A). Transient expression of constitutively active CN in mouse peritoneal macrophages and RAW 264.7 macrophages strongly activated NF-kappaB, a key mediator of iNOS expression. We also found that CN mediates NF-kappaB activation via IkappaB-alpha hyperphosphorylation and degradation. Overexpression of dominant negative mutant of IKKalpha and -beta demonstrates that only IKKbeta is the target for CN. These results indicate that CN is required for full iNOS expression and the effective activation of NF-kappaB in RAW 264.7 and peritoneal macrophages.  相似文献   

9.
Helicobacter pylori infection induces apoptosis and inducible nitric oxide synthase (iNOS) expression in gastric epithelial cells. In this study, we investigated the effects of NF-kappaB activation and iNOS expression on apoptosis in H. pylori-infected gastric epithelial cells. The suppression of NF-kappaB significantly increased caspase-3 activity and apoptosis in H. pylori-infected MKN-45 and Hs746T gastric epithelial cell lines as well as primary gastric epithelial cells. An NF-kappaB signaling pathway via NF-kappaB-inducing kinase and IkappaB kinase-beta activation was found to be involved in the inhibition of apoptosis in H. pylori-infected gastric epithelial cells. In gastric epithelial cells transfected with retrovirus containing IkappaBalpha superrepressor, iNOS mRNA and protein levels were reduced, indicating that H. pylori infection induced the expression of iNOS by activating NF-kappaB. Moreover, a NO donor, S-nitroso-N-acetylpenicillamine (100 microM), decreased caspase-3 activity and apoptosis in NF-kappaB-suppressed cells infected with H. pylori. These results suggest that NF-kappaB activation may play a role in protecting gastric epithelial cells from H. pylori-induced apoptosis by upregulating endogenous iNOS.  相似文献   

10.
We previously showed that 1-[3-(3-pyridyl)-acryloyl]-2-pyrrolidinone hydrochloride (N2733) inhibits lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF)-alpha secretion and improves the survival of endotoxemic mice. Since overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMCs) is largely responsible for the development of endotoxemic shock, and iNOS gene expression is mainly regulated by LPS and inflammatory cytokines, we studied whether or not N2733 affects interleukin (IL)-1beta-induced iNOS gene expression, NF-kappaB activation, and NF-kappaB inhibitor (IkappaB)-alpha degradation in cultured rat VSMCs. N2733 dose-dependently (10-100 microM) inhibited IL-1beta-stimulated NO production, and decreased IL-1beta-induced iNOS mRNA and protein expression, as found on Northern and Western blot analyses, respectively. Gel shift assay and an immunocytochemical study showed that N2733 inhibited IL-1beta-induced NF-kappaB activation and its nuclear translocation. Western blot analyses involving anti-IkappaB-alpha and anti-phospho IkappaB-alpha antibodies showed that IL-1beta induced transient degradation of IkappaB-alpha preceded by the rapid appearance of phosphorylated IkappaB-alpha, both of which were markedly blocked by N2733. N2733 blocked IL-1beta-induced phosphorylated IkappaB-alpha even in the presence of a proteasome inhibitor (MG115). Immunoblot analysis involving anti-IkappaB kinase (IKK)-alpha and anti-phosphoserine antibodies revealed that N2733 inhibited IL-1beta-induced IKK-alpha phosphorylation, whereas N2733 had no inhibitory effect on IL-1beta-stimulated p42/p44 MAP kinase or p38 MAP kinase activity. Our results suggest that the inhibitory action of N2733 toward IL-1beta-induced NF-kappaB activation and iNOS expression is due to its blockade of the upstream signal(s) leading to IKK-alpha activation, and subsequent phosphorylation and degradation of IkappaB-alpha in rat VSMCs.  相似文献   

11.
12.
13.
14.
15.
Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases.  相似文献   

16.
17.
18.
4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号