首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
晋陕宁黄土丘陵区生态修复与农林牧业持续发展仿真研究   总被引:1,自引:0,他引:1  
晋陕宁黄土丘陵区土壤侵蚀严重,生态环境脆弱,不合理利用土地是其主要原因,生态修复与环境重建是该区生态与经济持续发展的重要战略措施。应用系统动力学(System Dynamic,简称SD)和“反馈控制(Feedback control)理论建立了该区生态修复和环境重建的SD模型,它分为人口、农业、林业、牧业、农村经济、土壤侵蚀和生态环境6个模块,仿真时间1990~2080年,步长1a。经检验该SD模型的有效性为93.5%,可用于未来仿真预测。根据该区的生态环境特点和农牧业发展现状,选择生态环境恢复重建的3种典型模式——同步发展模式(A模式)、逐步调整模式(B模式)和现状发展模式(C模式)进行仿真研究,预测3种模式2000~2080年的土壤侵蚀、土地利用的发展动态以及农林牧业和生态环境演化趋势。仿真结果表明:土地利用与农、林、牧业持续发展密切相关,坡耕地和草场退化是制约农林牧业发展的主要因素。合理调整土地利用结构和加速治理侵蚀,可促进生态环境逐步恢复和农林牧业持续发展。同步发展模式(A模式)是该区生态修复和环境重建的3个仿真模式中的最优策略,它可促进农林牧协调发展和生态一经济趋向良性循环,并提出该区生态修复与环境重建的对策措施。该SD模型结构合理,运行功能良好,能较真实的模拟具有多变量、非线性变量的复杂生态系统的动态行为,为生态修复研究提供一种有效工具。  相似文献   

2.
Animal production has changed from subsistence to an industrial model, lowering production costs but giving rise to higher potential environmental impact. When the effluents are not correctly managed, serious pollution events can occur. In Brazil liquid manure is commonly stored in reception pits or covered lagoons (biodigestors), followed by land application as a biofertilizer. In some regions there is an excess of manure due to low soil support capacities, and in these cases new technologies have to be adopted to export or treat the excess effluent. Manure storage time in pits/covered lagoons and new polymers to separate the solid fraction have been studied in Brazil. Treatment technologies, like swine manure treatment systems (SMTS), have been developed from a technical and economical point of view to optimize the processes and give a technological alternative to pork producers increasing production while reducing environmental impact.  相似文献   

3.
论华北农牧交错带生态与经济建设的策略与途径   总被引:11,自引:0,他引:11  
张立峰 《应用生态学报》2003,14(11):2054-2056
华北农牧交错带自成型农作至今的百余年内,农牧业长期封闭、耗竭式生产,导致土地资源呈现沙化、碱化与贫瘠化演替,生态退化直接威胁着京、津及华北地区的生态安全,发挥市场经济下区域间互补性合作生产优势,组织农牧产品有效交流,建立开放式农牧生产结构。成为促进华北农牧交错带生态环境与社会经济互依发展的重要策略,基于不同效益主体的建设目标差异性及生态与经济演进态势的矛盾性,提出了华北农牧交错带生态一经济建设的技术途径,通过乔灌围网、草地培育,实现立体与平面相结合的土地生态防护体系;通过集约生产喜凉蔬菜、组织实施南秸北饲,发展区域特色优势产业,实现农业经济的突破。  相似文献   

4.
农田土壤有机碳固定潜力研究进展   总被引:41,自引:5,他引:41  
土壤有机碳的贮存和损失的研究是目前国际上前沿研究领域之一。研究农田土壤有机碳固定过程 ,对于了解农业生产过程和生态过程的关系具有十分重要的意义。在农田土壤中 ,发生变化的有机碳主要是年轻或轻组有机碳 ,而且土壤有机碳的损失或固定都是在土壤表层和有限的时间内发生 ,且数量巨大。传统的耕作体系是造成土壤有机碳损失的主要原因。为了增加农田土壤有机碳的保有量 ,农业管理措施应该从增加有机碳的输入量 (如草田轮作、保留残茬以及施用肥料等 )和减少土壤有机碳的矿化 (少、免耕等 )两方面入手  相似文献   

5.
中国农村环境的近年变化趋势   总被引:1,自引:0,他引:1  
韩纯儒 《生态学报》1990,10(1):37-44
  相似文献   

6.

Purpose

Topsoil erosion due to land use has been characterised as one of the most damaging problems from the perspective of soil-resource depletion, changes in soil fertility and net soil productivity and damage to aquatic ecosystems. On-site environmental damage to topsoil by water erosion has begun to be considered in Life Cycle Assessment (LCA) within the context of ecosystem services. However, a framework for modelling soil erosion by water, addressing off-site deposition in surface water systems, to support life cycle inventory (LCI) modelling is still lacking. The objectives of this paper are to conduct an overview of existing methods addressing topsoil erosion issues in LCA and to develop a framework to support LCI modelling of topsoil erosion, transport and deposition in surface water systems, to establish a procedure for assessing the environmental damage from topsoil erosion on water ecosystems.

Methods

The main features of existing methods addressing topsoil erosion issues in LCA are analysed, particularly with respect to LCI and Life Cycle Impact Assessment methodologies. An overview of nine topsoil erosion models is performed to estimate topsoil erosion by water, soil particle transport through the landscape and its in-stream deposition. The type of erosion evaluated by each of the models, as well as their applicable spatial scale, level of input data requirements and operational complexity issues are considered. The WATEM-SEDEM model is proposed as the most adequate to perform LCI erosion analysis.

Results and discussion

The definition of land use type, the area of assessment, spatial location and system boundaries are the main elements discussed. Depending on the defined system boundaries and the inherent routing network of the detached soil particles to the water systems, the solving of the multifunctionality of the system assumes particular relevance. Simplifications related to the spatial variability of the input data parameters are recommended. Finally, a sensitivity analysis is recommended to evaluate the effects of the transport capacity coefficient in the LCI results.

Conclusions

The published LCA methods focus only on the changes of soil properties due to topsoil erosion by water. This study provides a simplified framework to perform an LCI of topsoil erosion by considering off-site deposition of eroded particles in surface water systems. The widespread use of the proposed framework would require the development of LCI erosion databases. The issues of topsoil erosion impact on aquatic biodiversity, including the development of characterisation factors, are now the subject of on-going research.  相似文献   

7.
Water-soluble polymers (WSPs) are a versatile group of chemicals used across industries for different purposes such as thickening, stabilizing, adhesion and gelation. Synthetic polymers have tailored characteristics and are chemically homogeneous, whereas plant-derived biopolymers vary more widely in their specifications and are chemically heterogeneous. Between both sources, microbial polysaccharides are an advantageous compromise. They combine naturalness with defined material properties, precisely controlled by optimizing strain selection, fermentation operational parameters and downstream processes. The relevance of such bio-based and biodegradable materials is rising due to increasing environmental awareness of consumers and a tightening regulatory framework, causing both solid and water-soluble synthetic polymers, also termed ‘microplastics’, to have come under scrutiny. Xanthan gum is the most important microbial polysaccharide in terms of production volume and diversity of applications, and available as different grades with specific properties. In this review, we will focus on the applicability of xanthan gum in agriculture (drift control, encapsulation and soil improvement), considering its potential to replace traditionally used synthetic WSPs. As a spray adjuvant, xanthan gum prevents the formation of driftable fine droplets and shows particular resistance to mechanical shear. Xanthan gum as a component in encapsulated formulations modifies release properties or provides additional protection to encapsulated agents. In geotechnical engineering, soil amended with xanthan gum has proven to increase water retention, reduce water evaporation, percolation and soil erosion – topics of high relevance in the agriculture of the 21st century. Finally, hands-on formulation tips are provided to facilitate exploiting the full potential of xanthan gum in diverse agricultural applications and thus providing sustainable solutions.  相似文献   

8.
The environmental deteriorating effects arising from the misuse of pesticides and chemical fertilizers in agriculture has resulted in the pursuit of eco-friendly means of producing agricultural produce without compromising the safety of the environment. Thus, the purpose of this review is to assess the potential of bacteria in termite mound soil to serve as biofertilizer and biocontrol as a promising tool for sustainable agriculture. This review has been divided into four main sections: termite and termite mound soils, bacterial composition in termite mound soil, the role of bacteria in termite mound soil as biofertilizers, and the role of bacteria in termite mound soil as biocontrol. Some bacteria in termite mound soils have been isolated and characterized by various means, and these bacteria could improve the fertility of the soil and suppress soil borne plant pathogens through the production of antibiotics, nutrient fixation, and other means. These bacteria in termite mound soils could serve as a remarkable means of reducing the reliance on the usage of chemical fertilizers and pesticides in farming, thereby increasing crop yield.  相似文献   

9.
Effects of soil erosion on crop productivity   总被引:2,自引:0,他引:2  
Soil erosion and the effects of soil erosion on crop productivity have become emotional issues and have attracted the attention of agriculturists, environmentalists, and the public in general. In spite of heavy investments in research and development, the global rates of accelerated erosion are now presumbly higher than ever before. However, the data from available records obtained by diverse methods are uncomparable, unreliable, confusing, and often vary by several orders of magnitude. Reports of erosion‐caused alterations in crop productivity and soil properties are also contradictory and subjective. In addition to the lack of standardized methodology in evaluating soil erosion and its effects on crops, controversial interpretations are attributed to differences in soil profile characteristics, nutrient status, crops grown, and prevailing climatic conditions. Although erosion is generally associated wtih yield reductions, there are examples of where soil erosion has had no effect or has had a positive effect on crop production. Accelerated erosion affects productivity both directly and indirectly. Directly, the erosion‐induced reduction in crop yields is attributed to loss of rooting depth, degradation of soil structure, decrease in plant‐available water reserves, reduction in organic matter, and nutrient imbalance. Depending on soil properties and the degree of degradation, adverse effects of erosion on crop yields can be mostly compensated for by additional inputs of macronu‐trients (N, P, K) and macronutrients plus organic matter, by supplemental applications of some micronu‐trients, and by irrigation. For some soils, e.g., tropical soils, crop yields from severely eroded soils are significantly lower than those from uneroded lands and are often uneconomic in spite of additional inputs. Specific examples of yield alterations are given in relation to the loss of plant nutrients, soil water reserves, and alterations in soil properties. Criteria for soil‐loss tolerance are discussed, and productivity restoration of eroded soils is reviewed in relation to soil organic matter content and nutrient requirments. Research and development priorities are presented.  相似文献   

10.
土壤湿度和植被盖度对土壤风蚀的影响   总被引:23,自引:5,他引:23  
1 引  言随着土地承载量的不断增大 ,土壤风蚀已经成为干旱半干旱区农牧业发展的限制因素之一[4] .孙建中等[8] 研究表明 ,处于农牧交错带东段的河北坝上滦河源区是土壤轻度风蚀与未风蚀的交界带 .赵雪等[10 ] 对河北坝上脆弱生态环境进行了分析 ,指出该区农业发展中存在的问题之一是土壤风蚀和土地沙化 .赵文智[9] 对河北坝上半干旱 半湿润过渡带土壤水分状况研究表明 ,植被盖度的增大能够提高土壤保水能力 .贺大良等[5,6] 在土壤属性方面研究了降雨与起沙风速之间的关系 ,发现降水与土壤湿度关系十分密切 ,而土壤表层水分的增加可减弱…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号