首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different types of serine/threonine protein kinase inhibitors (cyclin-dependent, Ca2+-calmodulin dependent and protein kinase C) on the microtubule organization in cells of Arabidopsis thaliana main primary root zones were investigated in vivo. It was found that the microtubules in epidermal and cortex cells of transition and elongation zones, as well as microtubules in trichoblasts and atrichoblasts of the differentiation zone, were the most sensitive to the action of the investigated protein kinase inhibitors. It was established that, in these types of cells, microtubules change their initial orientation from transverse (oblique) to chaotic or longitudinal relative to the main primary root axis as a result of serine/threonine protein kinase inhibition. Microtubules in cells of root meristematic zone, as well as in root hairs, were less sensitive to the action of tested protein kinase inhibitors. Changes in the orientation of microtubules in cells of primary root zones under the effect of serine/threonine protein kinase inhibitors led to further disturbances in the growth and differentiation processes. It was assumed that the phosphorylation of microtubule proteins, primarily tubulin, could be involved in the regulation of these processes.  相似文献   

2.
To investigate the role of tyrosine phosphorylation/dephosphorylation processes in plant cells the morphology of Arabidopsis thaliana primary roots and the organization of cortical microtubules (MTs) were studied after inhibition of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs). It was found that all tested types of PTKs inhibitors (herbimycin A, genistein and tyrphostin AG 18) altered root hair growth and development, probably as a result of their significant influences on MTs organization in root hairs. The treatment also led to MTs reorientation and disruption in epidermis and cortex cells of both elongation and differentiation zones of primary roots. Enhanced tyrosine phosphorylation after treatment with a PTPs inhibitor (sodium orthovanadate) resulted in intense induction of root hair development and growth and caused a significant shortening of the elongation zone. It also led to changes of MTs orientation from transverse to longitudinal in epidermis and cortex cells of the elongation and differentiation zones of the root. From the data obtained we can suppose that tyrosine phosphorylation can be involved in the dynamics and organization of MTs in different types of plant cells.  相似文献   

3.
Summary We have found that a brief treatment of either PtK2 cells or stamen hair cells ofTradescantia virginiana during metaphase with okadaic acid, a potent protein phosphatase inhibitor, results in asynchronous entry into anaphase. After this treatment, the interval for the separation of sister chromatids can be expanded from a few seconds to approximately 5 min. We have performed a series of immunolocalizations of cells with anti-tubulin antibodies and CREST serum, asking whether okadaic acid induces asynchronous entry into anaphase through changes in the organization of the spindle microtubules or through a loss in the attachment of spindle microtubules to the kinetochores. Our experiments clearly indicate that asynchronous entry into anaphase after phosphatase inhibitor treatment is not the result of either altered spindle microtubule organization or the long-term loss of microtubule attachment to kinetochores. The kinetochore fiber bundles for all of the separating chromosomes are normally of uniform length throughout anaphase, but after asynchronous entry into anaphase, different groups of kinetochore fiber bundles have distinctly different lengths. The reason for this difference in length is that once split apart, the daughter chromosomes begin their movement toward the spindle poles, with normal shortening of the kinetochore fiber bundle microtubules. Thus, okadaic acid treatment during metaphase does not affect anaphase chromosome movement once it has begun. Our results suggest that one or more protein phosphatases appear to play an important role during metaphase in the regulatory cascade that culminates in synchronous sister chromatid separation.  相似文献   

4.
To investigate molecular mechanisms controlling plant morphogenesis, we examined the morphology of primary roots of Arabidopsis thaliana and the organization of cortical microtubules in response to inhibitors of serine/threonine protein phosphatases and kinases. We found that cantharidin, an inhibitor of types 1 and 2A protein phosphatases, as previously reported for okadaic acid and calyculin A (R.D. Smith, J.E. Wilson, J.C. Walker, T.I. Baskin [1994] Planta 194: 516-524), inhibited elongation and stimulated radial expansion. Of the protein kinase inhibitors tested, chelerythrine, 6-dimethylaminopurine, H-89, K252a, ML-9, and staurosporine all inhibited elongation, but only staurosporine appreciably stimulated radial expansion. To determine the basis for the root swelling, we examined cortical microtubules in semithin sections of material embedded in butyl-methyl-methacrylate. Chelerythrine and 100 nM okadaic acid, which inhibited elongation without causing swelling, did not change the appearance of cortical arrays, but calyculin A, cantharidin, and staurosporine, which caused swelling, disorganized cortical microtubules. The stability of the microtubules in the aberrant arrays was not detectably different from those in control arrays, as judged by similar sensitivity to depolymerization by cold or oryzalin. These results identify protein phosphorylation and dephosphorylation as requirements in one or more steps that organize the cortical array of microtubules.  相似文献   

5.
Microtubule-associated proteins play a crucial role in the regulation of microtubule dynamics, and are very important for plant cell and organ development. SBgLR is a potato pollen-specific protein, with five imperfect V-V-E-K-K-N/E-E repetitive motifs that are responsible for microtubule binding activity. In present study, SBgLR showed typical microtubule-associated protein characteristics; it bound tubulin and microtubules, and colocalized with microtubules in vitro. We also found that SBgLR could form oligomers, and that both the SBgLR monomers and oligomers bundle microtubules in vitro. Constitutive expression of SBgLR in tobacco caused curving and right-handed twisting root growth, abnormal directional cell expansion and cell layer arrangement, and pollen abortion. Immunofluorescence staining assays revealed that microtubule organization is altered in root epidermal cells in SBgLR-overexpressing lines. These suggest that SBgLR functions as a microtubule-associated protein in pollen development. Our results indicate that normal organization of MTs may be crucial for pollen development.  相似文献   

6.
Osmotic stress caused by drought and soil salinity is one of the factors that affect plant root system growth and development. Previous studies have shown that microtubule plays a critical role in plant roots response to osmotic stress, however, the underlying mechanism remains unclear. In the present study, the microtubule orientations in Arabidopsis roots growing under osmotic stress were determined using confocal fluorescence microscopy. The results showed that osmotic stress could significantly inhibit primary root elongation in Arabidopsis, and pharmacological tests confirmed that microtubules were involved in Arabidopsis roots response to osmotic stress. In vivo visualization of microtubule structures with the microtubule-binding domain–green fluorescent protein (GFP) reporter revealed altered microtubule orientation in rhizodermal cells under osmotic stress. These results above indicated that osmotic stress could inhibit the elongation growth of Arabidopsis primary root, and the inhibition effects might result from the changes in microtubule orientation.  相似文献   

7.
The effect of the low temperature (+4°C) on the organization of actin filaments (microfilaments) of cells from different growth zones has been studied in the roots of Arabidopsis thaliana (L.). It was found that cold treatment inhibited the growth of the primary root and changed its morphology, causing a formation of large number of deformed (ectopic) root hairs in differentiation zone. The temporal relationship between the disorientation and the organization of actin filaments and the detected changes of growth and morphology of roots after cold treatment was shown. It has been found that actin filaments of root hairs, meristematic cells, cells of elongation zone, and epidermal cells of all root zones of A. thaliana are the most sensitive to the cold.  相似文献   

8.
Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone.  相似文献   

9.
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation.  相似文献   

10.
Abstract: Hyperphosphorylation of the microtubule-associated protein τ is a characteristic of Alzheimer brain tissue. Recent in vitro data suggest that mitogen-activated protein kinase (MAPK), a proline-directed protein kinase, phosphorylates the sites on τ common to Alzheimer's disease. Using an okadaic acid-induced τ hyperphosphorylation model, we have tested the requirement for MAPK activity, using a specific inhibitor {PD098059 [2-(2'-amino-3'-methoxyphenyl)oxanaphthalen-4-one]} of the MAPK activator Mek1. Mobility shift, phosphoepitope analysis, and direct measurement of kinase activity indicated that the Mek1 inhibitor dose-dependently blocked basal and okadaic acid-induced MAPK activation. Despite a block of MAPK activation by this inhibitor, robust τ hyperphosphorylation was observed in response to okadaic acid. In addition, activation of MAPK by phorbol 12-myristate 13-acetate did not result in τ phosphorylation, indicating that in primary cultures of cortical neurons elevated MAPK activity is not sufficient to induce τ hyperphosphorylation.  相似文献   

11.
The effects of an exogeneous NO donor, sodium nitroprusside, on the orientation and organization of cortical microtubules in Arabidopsis thaliana root cells expressing GFP-MAP4 were studied in vivo. It was found that sodium nitroprusside treatment (10–500 μM, 24 h) caused the acceleration of primary root growth and enhanced initiation of root hairs in the differentiation zone. The influence of sodium nitroprusside revealed in changes in the orientation and organization of cortical microtubules in different types of cells of A. thaliana root. The most sensitive to sodium nitroprusside exposure were microtubules in epidermal cells of the elongation zone, where native transverse orientation of cortical microtubules turned into random, oblique, or longitudinal relative to the primary root axis. We suggest that NO, as one of the intracellular secondary messengers, triggers cell differentiation by reorientation of cortical microtubules, possibly via tubulin nitrotyrosination.  相似文献   

12.
Bcl-2 is a gene with clear anti-apoptotic properties in neurodegenerative conditions. One of the earliest hallmarks of degeneration in neuronal cell cultures is the loss of neurite morphology. Therefore the effect of Bcl-2 on neuronal morphology and microtubule stability was studied in nerve growth factor differentiated PC12 cells. Microtubule dynamics were modulated using the microtubule stabilizer taxol and the microtubule destabilizer, okadaic acid, a protein phosphatase inhibitor. It was shown that Bcl-2 protects against both taxol- and okadaic acid induced neurite retraction. Bcl-2 overexpression also significantly reduced the increased ratio of acetylated tubulin over total tubulin induced by taxol treatment. Interestingly, Bcl-2 attenuates the decrease of the same ratio after exposure to okadaic acid, suggesting that Bcl-2 is able to normalize the level of acetylated tubulin. In addition, cell death and nuclear fragmentation, induced by okadaic acid, were reduced in Bcl-2 overexpressing cells. This protection is either downstream or independent of tau phosphorylation as quantitative immunocytochemistry with AT8 showed that Bcl-2 did not modify the level of tau phosphorylation. The data suggest that the protective effect of Bcl-2 on the neuronal cytoskeleton is probably linked to changes in the post-translational modification of tubulin.  相似文献   

13.
In order to elucidate the involvement of brassinosteroids in the cell elongation process leading to normal plant morphology, indirect immunofluorescence and molecular techniques were use to study the expression of tubulin genes in the bul1-1 dwarf mutant of Arabidopsis thaliana (L.) Heynh., the characteristics of which are reported in this issue (M. Catterou et al., 2001). Microtubules were studied specifically in the regions of the mutant plant where the elongation zone is suppressed (hypocotyls and petioles), making the reduction in cell elongation evident. Indirect immunofluorescence of α-tubulin revealed that very few microtubules were present in mutant cells, resulting in the total lack of the parallel microtubule organization that is typical of elongating cells in the wild type. After brassinosteroid treatment, microtubules reorganized and became correctly oriented, suggesting the involvement of brassinosteroids in microtubule organization. Molecular analyses showed that the microtubule reorganization observed in brassinosteroid-treated bul1-1 plants did not result either from an activation of tubulin gene expression, or from an increase in tubulin content, suggesting that a brassinosteroid-responsive pathway exists which allows microtubule nucleation/organization and cell elongation without activation of tubulin gene expression. Received: 28 April 2000 / Accepted: 6 October 2000  相似文献   

14.
Hyperphosphorylated tau, which is the major protein of the neurofibrillary tangles in Alzheimer's disease brain, is most probably the result of an imbalance of tau kinase and phosphatase activities in the affected neurons. By using metabolically competent rat brain slices as a model, we found that selective inhibition of protein phosphatase 2A by okadaic acid induced an Alzheimer-like hyperphosphorylation and accumulation of tau. The hyperphosphorylated tau had a reduced ability to bind to microtubules and to promote microtubule assembly in vitro. Immunocytochemical staining revealed hyperphosphorylated tau accumulation in pyramidal neurons in cornu ammonis and in neocortical neurons. The topography of these changes recalls the distribution of neurofibrillary tangles in Alzheimer's disease brain. Selective inhibition of protein phosphatase 2B with cyclosporin A did not have any significant effect on tau phosphorylation, accumulation, or function. These studies suggest that protein phosphatase 2A participates in regulation of tau phosphorylation, processing, and function in vivo. A down-regulation of protein phosphatase 2A activity can lead to Alzheimer-like abnormal hyperphosphorylation of tau.  相似文献   

15.
Okadaic acid, a selective inhibitor of serine/threonine protein phosphatases, was utilized to investigate the requirement for phosphatases in cell cycle progression of GH4 rat pituitary cells. Okadaic acid inhibited GH4 cell proliferation in a concentration-dependent manner with a half-maximal inhibition (IC50) of approximately 5 nM. Treatment of GH4 cells with 10 nM okadaic acid resulted in a 40-60% decrease in phosphatase activity and an increase in the proportion of phosphorylated retinoblastoma (RB) protein. Cell cycle analysis indicated that okadaic acid increased the percentage of cells in G2-M, decreased proportionally the percentage of cells in G1 phase, and had little effect on the percentage of cells in S-phase. The absence of a change in the proportion of S-phase cells indicates that G1-specific phosphatases responsible for dephosphorylation of RB protein were not inhibited by 10 mM okadaic acid. Mitotic index revealed that 10 nM okadaic acid decreased proliferation of GH4 cells specifically by slowing the progression through mitosis. Immunostaining with anti-tubulin demonstrated that 10 nM okadaic acid-treated mitotic cells contained mitotic spindles; however, the spindle apparatus in these cells frequently contained multiple poles. These results suggest that the organization of spindle microtubules during prometaphase requires a protein phosphatase that is sensitive to nanomolar concentrations of okadaic acid. Chromosomes in 10 nM okadaic acid-treated cells appear to be attached to spindle microtubules and the nuclear envelope is absent. The effects of okadaic acid on the spindle differ from those elicited by the calcium channel blocker, nimodipine, indicating that this okadaic acid sensitive phosphatase is not part of the calcium signalling events which participate in mitotic progression.  相似文献   

16.
The organisation of plant microtubules into distinct arrays during the cell cycle requires interactions with partner proteins. Having recently identified a 90-kDa phospholipase D (PLD) that associates with microtubules and the plasma membrane [Gardiner et al. (2001) Plant Cell 13: 2143], we exposed seeds and young seedlings of Arabidopsis to 1-butanol, a specific inhibitor of PLD-dependent production of the signalling molecule phosphatidic acid (PA). When added to agar growth media, 0.2% 1-butanol strongly inhibited the emergence of the radicle and cotyledons, while 0.4% 1-butanol effectively blocked germination. When normal seedlings were transferred onto media containing 0.2% and 0.4% 1-butanol, the inhibitor retarded root growth by about 40% and 90%, respectively, by reducing cell elongation. Inhibited plants showed significant swelling in the root elongation zone, bulbous or branched root hairs, and modified cotyledon morphology. Confocal immunofluorescence microscopy of root tips revealed that 1-butanol disrupted the organisation of interphase cortical microtubules. Butanol isomers that do not inhibit PLD-dependent PA production, 2- and 3-butanol, had no effect on seed germination, seedling growth, or microtubule organisation. We propose that production of PA by PLD may be required for normal microtubule organisation and hence normal growth in Arabidopsis.  相似文献   

17.
Foissner I  Grolig F  Obermeyer G 《Protoplasma》2002,220(1-2):0001-0015
We investigated the cytoskeleton of Lilium longiflorum pollen tubes and examined the effects of the type 2A protein phosphatase (PP2A) inhibitors calyculin A and okadaic acid. An improved method for actin visualization, the simultaneous fixation and staining with rhodamine-labelled phalloidin during microscopical observation, revealed abundant actin filaments of no preferential orientation in the apical clear zone. Microtubules, visualized by indirect immunofluorescence, were mostly absent from the apices of straight-growing pollen tubes but present in those with irregular shape. Double labelling showed that both actin bundles and microtubules had a similar longitudinal or slightly helical orientation in the pollen tube shaft. In the presence of 30 nM calyculin A or okadaic acid, pollen tubes grew very slowly, branched frequently, and contained isolated, randomly oriented, curved actin bundles and microtubules. Treating pollen tubes with calyculin A or okadaic acid after germination arrested growth immediately, reversibly altered the alignment of actin bundles from axial to transverse, and disassembled microtubules. The changes in actin organization caused by the PP2A inhibitors were similar to those observed upon overexpression of AtRop1 (Y. Fu, G. Wu, Z. Yang, Journal of Cell Biology 152: 1019-1032, 2001), suggesting that hyperphosphorylation interferes with the signalling pathway of small GTPases. The effects of the PP2A inhibitors could be ameliorated with nanomolar concentrations of latrunculin B.  相似文献   

18.
Organization of tubulin cytoskeleton in epidermis and cortex cells in different root growth zones in Brassica rapa L. 6-day-old seedlings under clinorotation has been investigated. It was shown that changes in cortical microtubules orientation occur only in the distal elongation zone. In control, cortical microtubule arrays oriented transversely to the root long axis. Whereas under clinorotation an appearance of shorter randomly organized cortical microtubules was observed. Simultaneously, a significant decrease in a cell length in the central elongation zone under clinorotation was revealed. It is suggested that the decline of anisotropic growth, typical for central elongation zone cells, is connected with cortical microtubules disorientation under clinorotation.  相似文献   

19.
To investigate the effects of heat stress on the plant cytoskeleton, the structure of microtubule arrays in N. tabacum suspension cells incubated at 38 or 42°C was analysed. Whilst incubation at 42 °C resulted in the disruption of the majority of cellular microtubules after 30 min, in cells exposed to 38 °C all the microtubule arrays were preserved even after 12 h of incubation, although their organization was altered. The most susceptible were the microtubules of the mitotic spindle and the phragmoplast. Several abnormalities were observed: (i) splitting of the spindle into several parts; (ii) elongation of the spindles; (iii) formation of microtubule asters in mitotic cells, and (iv) elongation of phragmoplast microtubules. Exposure of cells to 38 °C caused a decrease in the mitotic index but an accumulation of telophase cells. The recovery of normal microtubule organization occurred after 12 h. Treatment of the cells subjected to heat stress conditions with an inhibitor of protein synthesis, cycloheximide, did not prevent either the alterations of microtubule organization or accumulation of cells containing phragmoplasts. Therefore, heat shock proteins do not seem to be directly responsible for the microtubule disorganization induced by heat stress.  相似文献   

20.
Interphase microtubules are organized into a radial array with centrosome in the center. This organization is a subject of cellular regulation that can be driven by protein phosphorylation. Only few protein kinases that regulate microtubule array in interphase cells have been described. Ste20-like protein kinase LOSK (SLK) was identified as a microtubule and centrosome-associated protein. In this study we have shown that the inhibition of LOSK activity by dominant-negative mutant K63R-ΔT or by LOSK depletion with RNAi leads to unfocused microtubule arrangement. Microtubule disorganization is prominent in Vero, CV-1, and CHO-K1 cells but less distinct in HeLa cells. The effect is a result neither of microtubule stabilization nor of centrosome disruption. In cells with suppressed LOSK activity centrosomes are unable to anchor or to cap microtubules, though they keep nucleating microtubules. These centrosomes are depleted of dynactin. Vero cells overexpressing K63R-ΔT have normal dynactin “comets” at microtubule ends and unaltered morphology of Golgi complex but are unable to polarize it at the wound edge. We conclude that protein kinase LOSK is required for radial microtubule organization and for the proper localization of Golgi complex in various cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号