首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Acetylcholinesterase (AChE) is anchored onto cell membranes by the transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric globular form that is prominently expressed in vertebrate brain. In parallel, the PRiMA-linked tetrameric butyrylcholinesterase (BChE) is also found in the brain. A single type of AChE-BChE hybrid tetramer was formed in cell cultures by co-transfection of cDNAs encoding AChET and BChET with proline-rich attachment domain-containing proteins, PRiMA I, PRiMA II, or a fragment of ColQ having a C-terminal GPI addition signal (QN-GPI). Using AChE and BChE mutants, we showed that AChE-BChE hybrids linked with PRiMA or QN-GPI always consist of AChET and BChET homodimers. The dimer formation of AChET and BChET depends on the catalytic domains, and the assembly of tetramers with a proline-rich attachment domain-containing protein requires the presence of C-terminal “t-peptides” in cholinesterase subunits. Our results indicate that PRiMA- or ColQ-linked cholinesterase tetramers are assembled from AChET or BChET homodimers. Moreover, the PRiMA-linked AChE-BChE hybrids occur naturally in chicken brain, and their expression increases during development, suggesting that they might play a role in cholinergic neurotransmission.  相似文献   

3.
Acetylcholinesterase (AChE) anchors onto cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric form in vertebrate brain. The assembly of AChE tetramer with PRiMA requires the C-terminal "t-peptide" in AChE catalytic subunit (AChE(T)). Although mature AChE is well known N-glycosylated, the role of glycosylation in forming the physiologically active PRiMA-linked AChE tetramer has not been studied. Here, several lines of evidence indicate that the N-linked glycosylation of AChE(T) plays a major role for acquisition of AChE full enzymatic activity but does not affect its oligomerization. The expression of the AChE(T) mutant, in which all N-glycosylation sites were deleted, together with PRiMA in HEK293T cells produced a glycan-depleted PRiMA-linked AChE tetramer but with a much higher K(m) value as compared with the wild type. This glycan-depleted enzyme was assembled in endoplasmic reticulum but was not transported to Golgi apparatus or plasma membrane.  相似文献   

4.
5.
Globular forms (G forms) of acetylcholinesterase (AChE) are formed by monomers, dimers and tetramers of the catalytic subunits (G1, G2 and G4). In this work the hydrophobic G2 and G4 AChE forms were purified to homogeneity from Discopyge electric organ and bovine caudate nucleus and studied from different points of view, including: velocity sedimentation, affinity to lectins and SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions. The polypeptide composition of Discopyge electric organ G2 is similar to Torpedo, however the pattern of the brain G4 AChE is much complex. Under non-reducing conditions the catalytic subunit possesses a molecular weight of 65 kDa, however this value increases to 68 kDa after reduction, suggesting that intrachain-disulfide bonds are important in the folding of the catalytic subunits of the AChE. Also it was found that after mild proteolysis; the (125I)-TID-20 kDa fragment decreased its molecular weight to approximately 10 kDa with little loss of AChE activity. Finally, we suggest a model for the organization of the different domains of the hydrophobic anchor fragment of the G4 form.  相似文献   

6.
7.
《Journal of Physiology》1998,92(3-4):183-190
Acetylcholinesterase (AChE) possesses short C-terminal peptides that are not necessary for catalytic activity. These peptides belong to different classes (R, H, T, S) and define the post-translational processing and targeting of the enzyme. In vertebrates, subunits of type H (AChEH) and of type T (AChET) are the most important: AChEH subunits produced glycolipid (GPI)-anchored dimers and AChET subunits produce hetero-oligometric forms such as membrane-bound tetramer in the mammalian brain (containing a 20 kDa hydrophobic protein) and asymmetric collagen-tailed forms in neuromuscular junctions (containing a specific collagen, ColQ). The T peptide allows the formation of tetrameric assemblies with a proline-rich attachment domain (PRAD) of collagen ColQ. These complex molecular structures condition the functional localization of the enzyme in the supramolecular architecture of cholinegic synapses.  相似文献   

8.
9.
PRiMA: the membrane anchor of acetylcholinesterase in the brain.   总被引:14,自引:0,他引:14  
As a tetramer, acetylcholinesterase (AChE) is anchored to the basal lamina of the neuromuscular junction and to the membrane of neuronal synapses. We have previously shown that collagen Q (ColQ) anchors AChE at the neuromuscular junction. We have now cloned the gene PRiMA (proline-rich membrane anchor) encoding the AChE anchor in mammalian brain. We show that PRiMA is able to organize AChE into tetramers and to anchor them at the surface of transfected cells. Furthermore, we demonstrate that AChE is actually anchored in neural cell membranes through its interaction with PRiMA. Finally, we propose that only PRiMA anchors AChE in mammalian brain and muscle cell membranes.  相似文献   

10.
11.
The characteristics of KCl-stimulated45Ca uptake by neuroblastoma x glioma hybrid NG108-15 cells induced to differentiate with dibutyryl cAMP (Bt2cAMP) and of PC12h pheochromocytoma cells induced to differentiate with nerve growth factor (NGF) were studied. The extent and rate of KCl-stimulated45Ca uptake by differentiated NG108-15 cells induced with Bt2cAMP were significantly higher than those of the undifferentiated cells. However, differentiation of PC12h cells induced with NGF did not enhance their extent or rate of KCl-stimulated45Ca uptake. The effects of Ca agonist and antagonists indicated that the characteristics of KCl-stimulated45Ca uptake by Bt2cAMP-treated NG108-15 cells and NGF-treated PC12h cells mainly reflected those of peripheral L-type voltage-sensitive calcium channels activated by high KCl. These results suggest that differentiated neural cells did not all show an enhanced capacity for KCl-stimulated45Ca uptake, although the characteristic patterns of differentiation (extension of neurite-like processes, etc.) and that of effect by Ca agonist or antagonists on NG108-15 cells and PC12h cells were similar.  相似文献   

12.
The muscarinic M2 receptor (M2R) acts as a negative feedback regulator in central cholinergic systems. Activation of the M2 receptor limits acetylcholine (ACh) release, especially when ACh levels are increased because acetylcholinesterase (AChE) activity is acutely inhibited. Chronically high ACh levels in the extracellular space, however, were reported to down-regulate M2R to various degrees. In the present study, we used the PRiMA knockout mouse which develops severely reduced AChE activity postnatally to investigate ACh release, and we used microdialysis to investigate whether the function of M2R to reduce ACh release in vivo was impaired in adult PRiMA knockout mice. We first show that striatal and hippocampal ACh levels, while strongly increased, still respond to AChE inhibitors. Infusion or injection of oxotremorine, a muscarinic M2 agonist, reduced ACh levels in wild-type mice but did not significantly affect ACh levels in PRiMA knockout mice or in wild-type mice in which ACh levels were artificially increased by infusion of neostigmine. Scopolamine, a muscarinic antagonist, increased ACh levels in wild-type mice receiving neostigmine, but not in wild-type mice or in PRiMA knockout mice. These results demonstrate that M2R are dysfunctional and do not affect ACh levels in PRiMA knockout mice, likely because of down-regulation and/or loss of receptor-effector coupling. Remarkably, this loss of function does not affect cognitive functions in PRiMA knockout mice. Our results are discussed in the context of AChE inhibitor therapy as used in dementia.  相似文献   

13.
Nerve growth factor (NGF)-mediated activation of mitogen-activated protein kinases (MAPK) is critical for differentiation and apoptosis of PC12 cells. Since NGF employs stress-activated c-Jun N-terminal kinase (JNK) to regulate both programmed cell death and neurite outgrowth of PC12 cells, we examined NGF-regulated JNK activity and the role of Gi/o proteins. Induction of JNK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). To discern the participation of various signaling intermediates, PC12 cells were treated with specific inhibitors prior to NGF challenge. NGF-elevated JNK activity was abolished by inhibitors of JNK, p38 MAPK, Src, JAK3 and MEK1/2. NGF-dependent JNK phosphorylation became insensitive to PTX treatment upon transient expressions of Gαz or the PTX-resistant mutants of Gαi1–3 and GαoA. Collectively, these studies indicate that NGF-dependent JNK activity may be mediated via Gi1–3 proteins, JAK3, Src, p38 MAPK and the MEK/ERK cascade.  相似文献   

14.
The severity of poisoning following acetylcholinesterase (AChE) inhibition correlates weakly with total AChE activity. This may be partly due to the existence of functional and non-functional pools of AChE. AChE consists of several molecular forms. The aim of the present study was to investigate which of these forms will correlate best with neuromuscular transmission (NMT) remaining after partial inhibition of this enzyme. Following sublethal intoxication of rats with the irreversible AChE inhibitor soman, diaphragms were isolated after 0.5 or 3 h. It appeared that at 3 h after soman poisoning the percentage of G1 increased, while those of G4 and A12 decreased. NMT was inhibited more strongly than in preparations obtained from the 0.5 h rats with the same level of AChE inhibition, but with a normal ratio of molecular forms. NMT correlated positively with G4 as well as with A12, but inversely with G1. In vitro inhibition with the charged inhibitors DEMP and echothiophate resulted in higher levels of total AChE, relatively less G1 and more G4 and A12 than after incubation with soman, but led to less NMT. Treatment of soman-intoxicated rats with the reactivating compound HI-6 resulted in preferential reactivation of A12, persisting low levels of G1 and concurrent recovery of NMT as compared with saline-treated soman controls with equal total AChE activity. Apparently, in rat diaphragm G4 and A12 are the functional AChE forms.  相似文献   

15.
The membrane-bound form of acetylcholinesterase (AChE) constitutes the major component of this enzyme in the mammalian brain. These molecules are hetero-oligomers, composed of four AChE catalytic subunits of type T (AChE(T)), associated with a transmembrane protein of type 1, called PRiMA (proline-rich membrane anchor). PRiMA consists of a signal peptide, an extracellular domain that contains a proline-rich motif (14 prolines with an intervening leucine, P4LP10), a transmembrane domain, and a cytoplasmic domain. Expression of AChE(T) subunits in transfected COS cells with a truncated PRiMA, without its transmembrane and cytoplasmic domains (P(stp54) mutant), produced secreted heteromeric complexes (T4-P(stp54)), instead of membrane-bound tetramers. In this study, we used a series of deletions and point mutations to analyze the interaction between the extracellular domain of PRiMA and AChE(T) subunits. We confirmed the importance of the polyproline stretches and defined a peptidic motif (RP4LP10RL), which induces the assembly and secretion of a heteromeric complex with four AChE(T) subunits, nearly as efficiently as the entire extracellular domain of PRiMA. It is noteworthy that deletion of the N-terminal segment preceding the prolines had little effect. Interestingly, short PRiMA mutants, truncated within the proline-rich motif, reduced both cellular and secreted AChE activity, suggesting that their interaction with AChE(T) subunits induces their intracellular degradation.  相似文献   

16.
Circulating acetylcholine, substrate of membrane acetylcholinesterase (AChE), is known to enhance the band 3 protein degree of phosphorylation. The purpose of this study was to verify whether the band 3 phosphorylation status is associated with a G protein and whether it is an influent factor on AChE enzyme activity. From blood samples of healthy donors, erythrocyte suspensions were prepared and incubated with AChE substrate (acetylcholine) and inhibitor (velnacrine), along with protein tyrosine kinase (PTK) and tyrosine phosphatase (PTP) inhibitors. AChE activity was determined by spectrophotometry and extract samples were analyzed by western blotting using primary antibodies to different G protein subunits. Our results with phosphorylated band 3 (PTP inhibitor) show an increase in erythrocyte AChE (p < 0.0001). A dephosphorylated band 3 state (PTK inhibitor) shows a significant decrease. We identified a potential linkage of protein subunits Gαi1/2 and Gβ with band 3 protein. Gαi1/2 and Gβ may be linked to the band 3 C-terminal site. Gαi1/2 is associated with the band 3 N-terminal domain, except for the control and ACh aliquots. Gβ is associated with both phosphorylated and dephosphorylated band 3 in the presence of velnacrine. We conclude that an erythrocyte G protein with subunits Gαi1/2 and Gβ is associated with band 3. AChE depends on the degree of band 3 phosphorylation and its association with Gαi1/2 and Gβ.  相似文献   

17.
The Gi-coupled M4 muscarinic acetylcholine receptor (mAChR) has recently been shown to stimulate the survival of PC12 cells through the PI3K/Akt/tuberin pathway. Since mTOR and p70S6K are critical components in activating translation which lie downstream of tuberin, we examined the ability of M4 mAChR to regulate these targets in PC12 cells. Carbachol (CCh) dose-dependently stimulated both mTOR and p70S6K phosphorylations and these responses were abolished by pertussis toxin pretreatment, indicating the involvement of the Gi-coupled M4 mAChR. Phosphorylations of both mTOR and p70S6K were effectively blocked upon inhibition of PI3K by wortmannin. As compared to similar responses elicited by the nerve growth factor (NGF), the M4 mAChR-induced activation of Akt/tuberin/mTOR/p70S6K occurred in a relatively transient manner. Although inhibition of protein phosphatase 2A by okadaic acid augmented the transient effects of CCh on Akt/tuberin phosphorylations, it failed to significantly prolong these responses. The total protein level of PTEN (tumor suppressor gene phosphatase and tensin homologue deleted on chromosome ten) was attenuated upon NGF, but not CCh treatment. This indicates that downregulation of PTEN may help to sustain the phosphorylation of Akt/tuberin by NGF. Collectively, these findings suggest that PP2A and PTEN may be involved in fine tuning the regulation of Akt/tuberin/mTOR/p70S6K in PC12 cells by M4 mAChR and TrkA, respectively.  相似文献   

18.
Abstract: Several monoclonal antibodies were raised against chicken acetylcholinesterase (AChE; EC 3.1.1.7). Some of these antibodies react with quail AChE but not with AChEs from nonavian vertebrates or invertebrates and not with butyrylcholinesterase. They may be classified in several mutually compatible groups, i.e., that can bind simultaneously to the monomeric form of AChE. Most antibodies recognize a peptidic domain that does not exist in mammalian AChE and that may be digested by trypsin without loss of activity or dissociation of quaternary structure. The only exception is the antibody C-131, which is conformation dependent and preferentially recognizes active AChE. We have set up two-site immunoradiometric assays, using an immobilized capture antibody, C-6 or C-131, and a radiolabeled antibody, 125I-C-54. The C-6/C-54 assay quantifies the totality of inactive and active AChE subunits: It detects 10?3 Ellman unit (~40 pg of protein) and yields a linear response up to at least 25 10?3 Ellman units. An analysis of gradient fractions, using C-6/C-54 and C-131/C-54 assays as well as activity determination, shows that the A12 and G4 forms are exclusively composed of active subunits, whereas inactive molecules cosediment with the active G2 and G1 forms. Both active and inactive G2 and G1 forms are amphiphilic, as indicated by the influence of detergents on their sedimentation coefficients and Stokes radii. In brain, the proportion of inactive forms decreases from 40% at embryonic day 11 (E11) to 20% at birth [day 1 (D1)]. In muscle, we observed no inactive AChE at E11 and a small proportion of inactive G1 at D1. The proportion of inactive forms was much higher in cultured myotubes, obtained from E11 myoblasts. These results show that the proportion of inactive AChE depends on the tissue and varies during development. Thus, the cells seem to control actively the acquisition of AChE activity, as well as the formation of the various oligomeric forms.  相似文献   

19.
20.
Acetylcholinesterase tetramers are inserted in the basal lamina of neuromuscular junctions or anchored in cell membranes through the interaction of four C-terminal t peptides with proline-rich attachment domains (PRADs) of cholinesterase-associated collagen Q (ColQ) or of the transmembrane protein PRiMA (proline-rich membrane anchor). ColQ and PRiMA differ in the length of their proline-rich motifs (10 and 15 residues, respectively). ColQ has two cysteines upstream of the PRAD, which are disulfide-linked to two AChE(T) subunits ("heavy" dimer), and the other two subunits are disulfide-linked together ("light" dimer). In contrast, PRiMA has four cysteines upstream of the PRAD. We examined whether these cysteines could be linked to AChE(T) subunits in complexes formed with PRiMA in transfected COS cells and in the mammalian brain. For comparison, we studied complexes formed with N-terminal fragments of ColQ, N-terminal fragments of PRiMA, and chimeras in which the upstream regions containing the cysteines were exchanged. We also compared the effect of mutations in the t peptides on their association with the two PRADs. We report that the two PRADs differ in their interaction with AChE(T) subunits; in complexes formed with the PRAD of PRiMA, we observed light dimers, but very few heavy dimers, even though such dimers were formed with the PQ chimera in which the N-terminal region of PRiMA was associated with the PRAD of ColQ. Complexes with PQ or with PRiMA contained heavy components, which migrated abnormally in SDS-PAGE but probably resulted from disulfide bonding of four AChE(T) subunits with the four upstream cysteines of the associated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号