首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.  相似文献   

2.
Denic V  Quan EM  Weissman JS 《Cell》2006,126(2):349-359
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.  相似文献   

3.
Carvalho P  Goder V  Rapoport TA 《Cell》2006,126(2):361-373
Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms a near stoichiometric membrane core complex by binding to Der1p via the linker protein Usa1p. This core complex associates through Hrd3p with Yos9p, a substrate recognition protein in the ER lumen. Substrates with misfolded intramembrane domains define a pathway (ERAD-M) that differs from ERAD-L by being independent of Usa1p and Der1p. Membrane proteins with misfolded cytosolic domains use the ERAD-C pathway and are directly targeted to the Doa10p ubiquitin ligase. All three pathways converge at the Cdc48p ATPase complex. These results lead to a unifying concept for ERAD that may also apply to mammalian cells.  相似文献   

4.
Stanley AM  Carvalho P  Rapoport T 《FEBS letters》2011,585(9):1281-1286
Misfolded, luminal endoplasmic reticulum (ER) proteins must be recognized before being degraded by a process called ERAD-L. Using site-specific photocrosslinking in Saccharomyces cerevisiae, we tested luminal interactions of a glycosylated ERAD-L substrate with potential recognition components. Major interactions were observed with Hrd3p. These are independent of the glycan and of other ERAD components, and can occur throughout the length of the unfolded substrate. The lectin Yos9p only interacts with a polypeptide segment distant from the degradation signal. Hrd3p may thus be the first substrate-recognizing component. Der1p appears to have a role in a pathway that is parallel to that involving Hrd3p.  相似文献   

5.
A substantial fraction of nascent proteins delivered into the endoplasmic reticulum (ER) never reach their native conformations. Eukaryotes use a series of complementary pathways to efficiently recognize and dispose of these terminally misfolded proteins. In this process, collectively termed ER-associated degradation (ERAD), misfolded proteins are retrotranslocated to the cytosol, polyubiquitinated, and degraded by the proteasome. Although there has been great progress in identifying ERAD components, how these factors accurately identify substrates remains poorly understood. The targeting of misfolded glycoproteins in the ER lumen for ERAD requires the lectin Yos9, which recognizes the glycan species found on terminally misfolded proteins. In a role that remains poorly characterized, Yos9 also binds the protein component of ERAD substrates. Here, we identified a 45-kDa domain of Yos9, consisting of residues 22–421, that is proteolytically stable, highly structured, and able to fully support ERAD in vivo. In vitro binding studies show that Yos9(22–421) exhibits sequence-specific recognition of linear peptides from the ERAD substrate, carboxypeptidase Y G255R (CPY*), and binds a model unfolded peptide ΔEspP and protein Δ131Δ in solution. Binding of Yos9 to these substrates results in their cooperative aggregation. Although the physiological consequences of this substrate-induced aggregation remain to be seen, it has the potential to play a role in the regulation of ERAD.  相似文献   

6.
7.
Yos9 is an essential component of the endoplasmic reticulum associated protein degradation (ERAD) system that is responsible for removing terminally misfolded proteins from the ER lumen and mediating proteasomal degradation in the cytosol. Glycoproteins that fail to attain their native conformation in the ER expose a distinct oligosaccharide structure, a terminal α1,6-linked mannose residue, that is specifically recognized by the mannose 6-phoshate receptor homology (MRH) domain of Yos9. We have determined the structure of the MRH domain of Yos9 in its free form and complexed with 3α, 6α-mannopentaose. We show that binding is achieved by loops between β-strands performing an inward movement and that this movement also affects the entire β-barrel leading to a twist. These rearrangements may facilitate the processing of client proteins by downstream acting factors. In contrast, other oligosaccharides such as 2α-mannobiose bind weakly with only locally occurring chemical shift changes underscoring the specificity of this substrate selection process within ERAD.  相似文献   

8.
Protein quality control is an essential function of the endoplasmic reticulum. Misfolded proteins unable to acquire their native conformation are retained in the endoplasmic reticulum, retro-translocated back into the cytosol, and degraded via the ubiquitin-proteasome system. We show that efficient degradation of soluble malfolded proteins in yeast requires a fully competent early secretory pathway. Mutations in proteins essential for ER-Golgi protein traffic severely inhibit ER degradation of the model substrate CPY*. We found ER localization of CPY* in WT cells, but no other specific organelle for ER degradation could be identified by electron microscopy studies. Because CPY* is degraded in COPI coat mutants, only a minor fraction of CPY* or of a proteinaceous factor required for degradation seems to enter the recycling pathway between ER and Golgi. Therefore, we propose that the disorganized structure of the ER and/or the mislocalization of Kar2p, observed in early secretory mutants, is responsible for the reduction in CPY* degradation. Further, we observed that mutations in proteins directly involved in degradation of malfolded proteins (Der1p, Der3/Hrd1p, and Hrd3p) lead to morphological changes of the endoplasmic reticulum and the Golgi, escape of CPY* into the secretory pathway and a slower maturation rate of wild-type CPY.  相似文献   

9.
Kim W  Spear ED  Ng DT 《Molecular cell》2005,19(6):753-764
Endoplasmic reticulum (ER) quality control mechanisms monitor the folding of nascent secretory and membrane polypeptides. Immature molecules are actively retained in the folding compartment whereas proteins that fail to fold are diverted to proteasome-dependent degradation pathways. We report that a key pathway of ER quality control consists of a two-lectin receptor system consisting of Yos9p and Htm1/Mnl1p that recognizes N-linked glycan signals embedded in substrates. This pathway recognizes lumenally oriented determinants of soluble and membrane proteins. Yos9p binds directly to substrates to discriminate misfolded from folded proteins. Substrates displaying cytosolic determinants can be degraded independently of this system. Our studies show that mechanistically divergent systems collaborate to guard against passage and accumulation of misfolded proteins in the secretory pathway.  相似文献   

10.
Secretory protein folding is monitored by endoplasmic reticulum (ER) quality control mechanisms. Misfolded proteins are retained and targeted to ER-associated degradation (ERAD) pathways. At their core are E3 ubiquitin ligases, which organize factors that recognize, ubiquitinate, and translocate substrates. Of these, we report that the Hrd1 complex manages three distinct substrate classes. A core complex is required for all classes and is sufficient for some membrane proteins. The accessory factors Usa1p and Der1p adapt the complex to process luminal substrates. Their integration is sufficient to process molecules bearing glycan-independent degradation signals. The presence of Yos9p extends the substrate range by mediating the recognition of glycan-based degradation signals. This modular organization enables the Hrd1 complex to recognize topologically diverse substrates. The Hrd1 system does not directly evaluate the folding state of polypeptides. Instead, it does so indirectly, by recognizing specific embedded signals displayed upon misfolding.  相似文献   

11.
Su W  Liu Y  Xia Y  Hong Z  Li J 《Molecular plant》2012,5(4):929-940
The endoplasmic reticulum-associated degradation (ERAD) is a highly conserved mechanism to remove misfolded membrane/secretory proteins from the endoplasmic reticulum (ER). While many of the individual components of the ERAD machinery are well characterized in yeast and mammals, our knowledge of a plant ERAD process is rather limited. Here, we report a functional study of an Arabidopsis homolog (AtOS9) of an ER luminal lectin Yos9 (OS-9 in mammals) that recognizes a unique asparagine-linked glycan on misfolded proteins. We discovered that AtOS9 is an ER-localized glycoprotein that is co-expressed with many known/predicted ER chaperones. A T-DNA insertional atos9-t mutation blocks the degradation of a structurally imperfect yet biochemically competent brassinosteroid (BR) receptor bri1-9, causing its increased accumulation in the ER and its consequent leakage to the cell surface responsible for restoring the BR sensitivity and suppressing the dwarfism of the bri1-9 mutant. In addition, we identified a missense mutation in AtOS9 in a recently discovered ERAD mutant ems-mutagenized bri1 suppressor 6 (ebs6-1). Moreover, we showed that atos9-t also inhibits the ERAD of bri1-5, another ER-retained BR receptor, and a misfolded EFR, a BRI1-like receptor for the bacterial translation elongation factor EF-Tu. Furthermore, we found that AtOS9 interacted biochemically and genetically with EBS5, an Arabidopsis homolog of the yeast Hrd3/mammalian Sel1L known to collaborate with Yos9/OS-9 to select ERAD clients. Taken together, our results demonstrated a functional role of AtOS9 in a plant ERAD process that degrades misfolded receptor-like kinases.  相似文献   

12.
During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.  相似文献   

13.
In yeast, the membrane-bound HMG-CoA reductase degradation (HRD) ubiquitin-ligase complex is a key player of the ER-associated protein degradation pathway that targets misfolded proteins for proteolysis. Yos9, a component of the luminal submodule of the ligase, scans proteins for specific oligosaccharide modifications, which constitute a critical determinant of the degradation signal. Here, we report the crystal structure of the Yos9 domain that was previously suggested to confer binding to Hrd3, another component of the HRD complex. We observe an αβ-roll domain architecture and a dimeric assembly which are confirmed by analytical ultracentrifugation of both the crystallized domain and full-length Yos9. Our binding studies indicate that, instead of this domain, the N-terminal part of Yos9 including the mannose 6-phosphate receptor homology domain mediates the association with Hrd3 in vitro. Our results support the model of a dimeric state of the HRD complex and provide first-time evidence of self-association on its luminal side.  相似文献   

14.
Benitez EM  Stolz A  Wolf DH 《FEBS letters》2011,585(19):3015-3019
The endoplasmic reticulum (ER) is responsible for folding and delivery of secretory proteins to their site of action. One major modification proteins undergo in this organelle is N-glycosylation. Proteins that cannot fold properly will be directed to a process known as endoplasmic reticulum associated degradation (ERAD). Processing of N-glycans generates a signal for ERAD. The lectin Yos9 recognizes the N-glycan signal of misfolded proteins and acts as a gatekeeper for the delivery of these substrates to the cytoplasm for degradation. Presence of Yos9 accelerates degradation of the glycosylated model ERAD substrate CPY?. Here we show that Yos9 has also a control function in degradation of the unglycosylated ERAD substrate CPY?0000. It decelerates its degradation rate.  相似文献   

15.
The EDEM and Yos9p families of lectin-like ERAD factors   总被引:2,自引:0,他引:2  
Protein quality control pathways monitor the folding of newly synthesized proteins throughout the cell. Irreversibly misfolded proteins are sorted and degraded to neutralize their potential toxicity. In the secretory pathway, multiple strategies have evolved to test the wide diversity of molecules that traffic through the endoplasmic reticulum. The organelle has adapted the use of N-linked glycans to signal protein folding states. The signals are read by the EDEM and Yos9 protein families that take substrates out of folding cycles for degradation.  相似文献   

16.
We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination.  相似文献   

17.
In eukaryotes, endoplasmic reticulum-associated degradation (ERAD) functions in cellular quality control and regulation of normal ER-resident proteins. ERAD proceeds by the ubiquitin-proteasome pathway, in which the covalent attachment of ubiquitin to proteins targets them for proteasomal degradation. Ubiquitin-protein ligases (E3s) play a crucial role in this process by recognizing target proteins and initiating their ubiquitination. Here we show that Hrd1p, which is identical to Der3p, is an E3 for ERAD. Hrd1p is required for the degradation and ubiquitination of several ERAD substrates and physically associates with relevant ubiquitin-conjugating enzymes (E2s). A soluble Hrd1 fusion protein shows E3 activity in vitro - catalysing the ubiquitination of itself and test proteins. In this capacity, Hrd1p has an apparent preference for misfolded proteins. We also show that Hrd1p functions as an E3 in vivo, using only Ubc7p or Ubc1p to specifically program the ubiquitination of ERAD substrates.  相似文献   

18.
The ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER. In this study we characterized the structure and function of the putative human orthologue of yeast Hrd1p/Der3p, designated human HRD1. We show that human HRD1 is a non-glycosylated, stable ER protein with a cytosolic RING-H2 finger domain. In the presence of the ubiquitin-conjugating enzyme UBC7, the RING-H2 finger has in vitro ubiquitination activity for Lys(48)-specific polyubiquitin linkage, suggesting that human HRD1 is an E3 ubiquitin ligase involved in protein degradation. Human HRD1 appears to be involved in the basal degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase but not in the degradation that is regulated by sterols. Additionally we show that human HRD1 is involved in the elimination of two model ER-associated degradation substrates, TCR-alpha and CD3-delta.  相似文献   

19.
The HRD ubiquitin ligase recognizes and ubiquitylates proteins of the endoplasmic reticulum that display structural defects. Here, we apply quantitative proteomics to characterize the substrate spectrum of the HRD complex. Among the identified substrates is Erg3p, a glycoprotein involved in sterol synthesis. We characterize Erg3p and demonstrate that the elimination of Erg3p requires Htm1p and Yos9p, two proteins that take part in the glycan-dependent turnover of aberrant proteins. We further show that the HRD ligase also mediates the breakdown of Erg3p and CPY* engineered to lack N-glycans. The degradation of these nonglycosylated substrates is enhanced by a mutant variant of Yos9p that has lost its affinity for oligosaccharides, indicating that Yos9p has a previously unrecognized role in the quality control of nonglycosylated proteins.  相似文献   

20.
Proteins misfolded in the endoplasmic reticulum (ER) are degraded in the cytosol by a ubiquitin-dependent proteasome system, a process collectively termed ER-associated degradation (ERAD). Unraveling the molecular mechanisms of mammalian ERAD progresses more slowly than that of yeast ERAD due to the laborious procedures required for gene targeting and the redundancy of components. Here, we utilized the chicken B lymphocyte-derived DT40 cell line, which exhibits an extremely high homologous recombination frequency, to analyze ERAD mechanisms in higher eukaryotes. We disrupted the SEL1L gene, which encodes the sole homologue of yeast Hrd3p in both chickens and mammals; Hrd3p is a binding partner of yeast Hrd1p, an E3 ubiquitin ligase. SEL1L-knockout cells grew only slightly more slowly than the wild-type cells. Pulse chase experiments revealed that chicken SEL1L was required for ERAD of misfolded luminal proteins such as glycosylated NHK and unglycosylated NHK-QQQ but dispensable for that of misfolded transmembrane proteins such as NHK(BACE) and CD3-δ, as in mammals. The defect of SEL1L-knockout cells in NHK degradation was restored by introduction of not only chicken SEL1L but also mouse and human SEL1L. Deletion analysis showed the importance of Sel1-like tetratricopeptide repeats but not the fibronectin II domain in the function of SEL1L. Thus, our reverse genetic approach using the chicken DT40 cell line will provide highly useful information regarding ERAD mechanisms in higher eukaryotes which express ERAD components redundantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号