首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lantibiotics are post-translationally modified antimicrobial peptides which are active at nanomolar concentrations. Some lantibiotics have been shown to function by targeting lipid II, the essential precursor of cell wall biosynthesis. Given that lantibiotics are ribosomally synthesized and amenable to site-directed mutagenesis, they have the potential to serve as biological templates for the production of novel peptides with improved functionalities. However, if a rational approach to novel lantibiotic design is to be adopted, an appreciation of the roles of each individual amino acid (and each domain) is required. To date no lantibiotic has been subjected to such rigorous analysis. To address this issue we have carried out complete scanning mutagenesis of each of the 59 amino acids in lacticin 3147, a two-component lantibiotic which acts through the synergistic activity of the peptides LtnA1 (30 amino acids) and LtnA2 (29 amino acids). All mutations were performed in situ in the native 60 kb plasmid, pMRC01. A number of mutations resulted in the elimination of detectable bioactivity and seem to represent an invariable core within these and related peptides. Significantly however, of the 59 amino acids, at least 36 can be changed without resulting in a complete loss of activity. Many of these are clustered to form variable domains within the peptides. The information generated in this study represents a blue-print that will be critical for the rational design of lantibiotic-based antimicrobial compounds.  相似文献   

2.
We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.  相似文献   

3.
The thioether rings in the lantibiotics lacticin 3147 and nisin are posttranslationally introduced by dehydration of serines and threonines, followed by coupling of these dehydrated residues to cysteines. The prepeptides of the two-component lantibiotic lacticin 3147, LtnA1 and LtnA2, are dehydrated and cyclized by two corresponding bifunctional enzymes, LtnM1 and LtnM2, and are subsequently processed and exported via one bifunctional enzyme, LtnT. In the nisin synthetase complex, the enzymes NisB, NisC, NisT, and NisP dehydrate, cyclize, export, and process prenisin, respectively. Here, we demonstrate that the combination of LtnM2 and LtnT can modify, process, and transport peptides entirely different from LtnA2 and that LtnT can process and transport unmodified LtnA2 and unrelated peptides. Furthermore, we demonstrate a higher extent of NisB-mediated dehydration in the absence of thioether rings. Thioether rings apparently inhibited dehydration, which implies alternating actions of NisB and NisC. Furthermore, certain (but not all) NisC-cyclized peptides were exported with higher efficiency as a result of their conformation. Taken together, these data provide further insight into the applicability of Lactococcus lactis strains containing lantibiotic enzymes for the design and production of modified peptides.  相似文献   

4.
The interaction of the lantibiotic gallidermin and the glycopeptide antibiotic vancomycin with bacterial membranes was simulated using mass sensitive biosensors and isothermal titration calorimetry (ITC). Both peptides interfere with cell wall biosynthesis by targeting the cell wall precursor lipid II, but differ clearly in their antibiotic activity against individual bacterial strains. We determined the binding affinities of vancomycin and gallidermin to model membranes±lipid II in detail. Both peptides bind to DOPC/lipid II membranes with high affinity (K(D) 0.30 μM and 0.27 μM). Gallidermin displayed also strong affinity to pure DOPC membranes (0.53 μM) an effect that was supported by ITC measurements. A surface acoustic wave (SAW) sensor allowed measurements in the picomolar concentration range and revealed that gallidermin targets lipid II at an equimolar ratio and simultaneously inserts into the bilayer. These results indicate that gallidermin, in contrast to vancomycin, combines cell wall inhibition and interference with the bacterial membrane integrity for potent antimicrobial activity.  相似文献   

5.
We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of ∼0.3 μM and stoichiometry of ∼2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C55-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target.  相似文献   

6.
We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.  相似文献   

7.
Posttranslationally modified bacteriocins--the lantibiotics   总被引:1,自引:0,他引:1  
Lantibiotics are a subgroup of bacteriocins that are characterized by the presence of the unusual thioether amino acids lanthionine and 3-methyllanthionine generated through posttranslational modification. The biosynthesis of lantibiotics follows a defined pathway comprising modifications of the prepeptide, proteolytic activation, and export. The genes encoding the biosynthesis apparatus and the lantibiotic prepeptide are organized in clusters, which also include information for proteins involved in regulation and producer self-protection. The elongated cationic lantibiotics primarily act through the formation of pores and recent progress with nisin and epidermin has shown that specific docking molecules such as lipid II play an essential role in this mechanism. Mersacidin and actagardine inhibit cell wall biosynthesis by complexing the precursor lipid II, whereas the cinnamycin-like peptides bind to phosphoethanolamine thus inhibiting phospholipase A2.  相似文献   

8.
The lantibiotic NAI-107 is active against Gram-positive bacteria including vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. To identify the molecular basis of its potency, we studied the mode of action in a series of whole cell and in vitro assays and analyzed structural features by nuclear magnetic resonance (NMR). The lantibiotic efficiently interfered with late stages of cell wall biosynthesis and induced accumulation of the soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide (UDP-MurNAc-pentapeptide) in the cytoplasm. Using membrane preparations and a complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes (MraY, MurG, FemX, PBP2) and their respective purified substrates, we showed that NAI-107 forms complexes with bactoprenol-pyrophosphate-coupled precursors of the bacterial cell wall. Titration experiments indicate that first a 1:1 stoichiometric complex occurs, which then transforms into a 2:1 (peptide: lipid II) complex, when excess peptide is added. Furthermore, lipid II and related molecules obviously could not serve as anchor molecules for the formation of defined and stable nisin-like pores, however, slow membrane depolarization was observed after NAI-107 treatment, which could contribute to killing of the bacterial cell.  相似文献   

9.
Lacticin 3147 is a two-component bacteriocin produced by Lactococcus lactis subspecies lactis DPC3147. In order to further characterize the biochemical nature of the bacteriocin, both peptides were isolated which together are responsible for the antimicrobial activity. The first, LtnA1, is a 3,322 Da 30-amino acid peptide and the second component, LtnA2, is a 29-amino acid peptide with a mass of 2,847 Da. Conventional amino acid analysis revealed that both peptides contain the thioether amino acid, lanthionine, as well as an excess of alanine to that predicted from the genetic sequence of the peptides. Chiral phase gas chromatography coupled with mass spectrometry of amino acid composition indicated that both LtnA1 and LtnA2 contain D-alanine residues and amino acid sequence analysis of LtnA1 confirmed that the D-alanine results from post-translational modification of a serine residue in the primary translation product. Taken together, these results demonstrate that lacticin 3147 is a novel, two-component, D-alanine containing lantibiotic that undergoes extensive post-translational modification which may account for its potent antimicrobial activity against a wide range of Gram-positive bacteria.  相似文献   

10.
Lantibiotics, a group of lanthionine-containing peptides, display their antibiotic activity by combining different killing mechanisms within one molecule. The prototype lantibiotic nisin was shown to possess both inhibition of peptidoglycan synthesis and pore formation in bacterial membranes by interacting with lipid II. Gallidermin, which shares the lipid II binding motif with nisin but has a shorter molecular length, differed from nisin in pore formation in several strains of bacteria. To simulate the mode of action, we applied cyclic voltammetry and quartz crystal microbalance to correlate pore formation with lipid II binding kinetics of gallidermin in model membranes. The inability of gallidermin to form pores in DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) (C18/1) and DPoPC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine) (C16/1) membranes was related to the membrane thickness. For a better simulation of bacterial membrane characteristics, two different phospholipids with branched fatty acids were incorporated into the DPoPC matrix. Phospholipids with methyl branches in the middle of the fatty acid chains favored a lipid II–independent DPoPC permeabilization by gallidermin, while long-branched phospholipids in which the branch is placed near the hydrophilic region induced an identical lipid II–dependent pore formation of gallidermin and nisin. Obviously, the branched lipids altered lipid packing and reduced the membrane thickness. Therefore, the duality of gallidermin activity (pore formation and inhibition of the cell wall synthesis) seems to be balanced by the bacterial membrane composition.  相似文献   

11.
The lactic acid bacterium Lactococcus lactis IFPL105 secretes a broad spectrum bacteriocin produced from the 46 kb plasmid pBAC105. The bacteriocin was purified to homogeneity by ionic and hydrophobic exchange and reverse-phase chromatography. Bacteriocin activity required the complementary action of two distinct peptides (alpha and beta) with average molecular masses of 3322 and 2848 Da, respectively. The genes encoding the two peptides were cloned and sequenced and were found to be identical to the ltnAB genes from plasmid pMRC01 of L. lactis DPC3147. LtnA and LtnB contain putative leader peptide sequences similar to the known 'double glycine' type. The predicted amino acid sequence of mature LtnA and LtnB differed from the amino acid content determined for the purified alpha and beta peptides in the residues serine, threonine, cysteine and alanine. Post-translational modification, and the formation of lanthionine or methyllanthionine rings, could partly explain the difference. Hybridization experiments showed that the organization of the gene cluster in pBAC105 responsible for the production of the bacteriocin is similar to that in pMRC01, which involves genes encoding modifying enzymes for lantibiotic biosynthesis and dual-function transporters. In both cases, the gene clusters are flanked by IS946 elements, suggesting an en bloc transposition. The findings from the isolation and molecular characterization of the bacteriocin provide evidence for the lantibiotic nature of the two peptides.  相似文献   

12.
Unlike numerous pore-forming amphiphilic peptide antibiotics, the lantibiotic nisin is active in nanomolar concentrations, which results from its ability to use the lipid-bound cell wall precursor lipid II as a docking molecule for subsequent pore formation. Here we use genetically engineered nisin variants to identify the structural requirements for the interaction of the peptide with lipid II. Mutations affecting the conformation of the N-terminal part of nisin comprising rings A through C, e.g. [S3T]nisin, led to reduced binding and increased the peptide concentration necessary for pore formation. The binding constant for the S3T mutant was 0.043 x 10(7) m(-1) compared with 2 x 10(7) m(-1) for the wild-type peptide, and the minimum concentration for pore formation increased from the 1 nm to the 50 nm range. In contrast, peptides mutated in the flexible hinge region, e.g. [DeltaN20/DeltaM21]nisin, were completely inactive in the pore formation assay, but were reduced to some extent in their in vivo activity. We found the remaining in vivo activity to result from the unaltered capacity of the mutated peptide to bind to lipid II and thus to inhibit its incorporation into the peptidoglycan network. Therefore, through interaction with the membrane-bound cell wall precursor lipid II, nisin inhibits peptidoglycan synthesis and forms highly specific pores. The combination of two killing mechanisms in one molecule potentiates antibiotic activity and results in nanomolar MIC values, a strategy that may well be worth considering for the construction of novel antibiotics.  相似文献   

13.
The antibiotic peptide nisin is the first known lantibiotic that uses a docking molecule within the bacterial cytoplasmic membrane for pore formation. Through specific interaction with the cell wall precursor lipid II, nisin forms defined pores which are stable for seconds and have pore diameters of 2 to 2.5 nm.  相似文献   

14.
15.
Mersacidin binds to lipid II and thus blocks the transglycosylation step of the cell wall biosynthesis. Binding of lipid II involves a special motif, the so-called mersacidin-lipid II binding motif, which is conserved in a major subgroup of lantibiotics. We analyzed the role of Ca2+ ions in the mode of action of mersacidin and some related peptides containing a mersacidin-like lipid II binding motif. We found that the stimulating effect of Ca2+ ions on the antimicrobial activity known for mersacidin also applies to plantaricin C and lacticin 3147. Ca2+ ions appear to facilitate the interaction of the lantibiotics with the bacterial membrane and with lipid II rather than being an essential part of a peptide-lipid II complex. In the case of lacticin 481, both the interaction with lipid II and the antimicrobial activity were Ca2+ independent.Bacteriocins are a heterogeneous group of ribosomally synthesized antibiotic peptides and proteins which were proposed to fall into three classes, the lanthionine-containing bacteriocins (class I), the non-lanthionine-containing bacteriocins (class II), and the bacteriolysins, respectively (for a review, see reference 12).The lanthionine-containing bacteriocins (lantibiotics) are produced by and are effective against a broad spectrum of gram-positive bacteria. They are small, posttranslationally modified antimicrobial peptides containing characteristic thioether ring structures (lanthionine and 3-methyllanthionine) and other unusual amino acids, e.g., d-Ala (3, 49).Mersacidin was the first lantibiotic shown to interact with a defined target molecule, the ultimate cell wall precursor lipid II (6) (Fig. (Fig.1).1). Further studies revealed that this molecule is also the target of nisin and many other lantibiotics (19). Lipid II is synthesized on the cytoplasmic side of the membrane and translocated to the outside of the bacterial cell membrane, where the disaccharide pentapeptide part of lipid II is incorporated into the growing peptidoglycan network by the cell wall biosynthesis machinery (for reviews, see references 5 and 45).Open in a separate windowFIG. 1.Primary structure of lantibiotics containing the mersacidin-lipid II binding motif (A) and the structure of the cell wall precursor lipid II (B). The binding motif of mersacidin and identical amino acids in the mersacidin-like lantibiotics are highlighted in gray. Dha, dehydroalanine; Dhb, dehydrobutyrine; Ala-S-Ala, lanthionine; Abu-S-Ala, methyllanthionine; DAla, d-alanine.To date, two different lipid II binding motifs in lantibiotics have been identified, referred to as the nisin-lipid II and mersacidin-lipid II binding motifs, and a classification regarding their interaction with the cell wall precursor was recently proposed by Bierbaum and Sahl (3).The nisin-lipid II binding motif is also found in related lantibiotics, e.g., gallidermin, epidermin (4), mutacin 1140 (40), and subtilin (30). Nisin displays a dual mode of action by binding to lipid II. It prevents lipid II incorporation into the growing murein layer, thereby blocking cell wall biosynthesis (8), and it uses lipid II as an anchor molecule for subsequent pore formation (48). The nisin/lipid II interaction was analyzed by nuclear magnetic resonance spectroscopy and it was shown that the N-terminal part of the peptide forms a cage-like structure encompassing the pyrophosphate group of the lipid II molecule, leading to the formation of five intermolecular hydrogen bonds between the backbone amids of the lantibiotic and pyrophosphate groups (22).The second binding motif occurs in mersacidin and related lantibiotics (Fig. (Fig.1).1). The interaction of mersacidin with lipid II leads to inhibition of the peptidoglycan biosynthesis at the level of transglycosylation (7). In contrast to nisin, the activity of mersacidin is influenced by Ca2+ ions, since its antimicrobial activity increased twofold in Ca2+-containing medium (2). When a Ca2+ binding pocket was identified in the mersacidin-like lantibiotic actagardine by crystal structure determination, it was suggested that the deprotonated Glu17 in the mersacidin-lipid II binding motif (Fig. (Fig.1)1) is involved in Ca2+ binding (24). Furthermore, nuclear magnetic resonance studies revealed that, upon binding of lipid II, mersacidin effectively alters its overall backbone geometry with Ala-12 and Abu-13, acting as a hinge region. The conformational change exposes the amino group of Lys1 and the carboxyl group of Glu17 to the lipid II molecule (21). It was speculated that Ca2+ is needed to bridge the mersacidin Glu17 side chain to the negatively charged groups of lipid II; alternatively, a direct salt bridge with the positively charged side chain of Lys3 in lipid II is formed (21). This hypothesis is in good agreement with the observation that replacement of Glu17 by Ala abolished the antimicrobial activity of mersacidin (43).To analyze the impact of Ca2+ on the activity of mersacidin-like lantibiotics, we selected four peptides which possess the respective lipid II-binding motif, yet show significant differences in primary structures (Fig. (Fig.1).1). Like mersacidin, plantaricin C and the two-component lantibiotic lacticin 3147 have been shown to inhibit cell wall biosynthesis at the level of transglycosylation (46, 47). Additionally, lacticin 3147 shows a dual mode of action and is able to form lipid II-dependent pores (28, 47). The mode of action of lacticin 481 so far has not been characterized in sufficient detail.We found that Ca2+ increases the antimicrobial activity of all peptides containing the mersacidin-lipid II binding motif, except for lacticin 481, however, which was also found to bind to lipid II.  相似文献   

16.
The lantibiotic (i.e., lanthionine-containing antibiotic) mersacidin is an antimicrobial peptide of 20 amino acids which is produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin inhibits bacterial cell wall biosynthesis by binding to the precursor molecule lipid II. The structural gene of mersacidin (mrsA) and the genes for the enzymes of the biosynthesis pathway, dedicated transporters, producer self-protection proteins, and regulatory factors are organized in a biosynthetic gene cluster. For site-directed mutagenesis of lantibiotics, the engineered genes must be expressed in an expression system that contains all of the factors necessary for biosynthesis, export, and producer self-protection. In order to express engineered mersacidin peptides, a system in which the engineered gene replaces the wild-type gene on the chromosome was constructed. To test the expression system, three mutants were constructed. In S16I mersacidin, the didehydroalanine residue (Dha) at position 16 was replaced with the Ile residue found in the closely related lantibiotic actagardine. S16I mersacidin was produced only in small amounts. The purified peptide had markedly reduced antimicrobial activity, indicating an essential role for Dha16 in biosynthesis and biological activity of mersacidin. Similarly, Glu17, which is thought to be an essential structure in mersacidin, was exchanged for alanine. E17A mersacidin was obtained in good yields but also showed markedly reduced activity, thus confirming the importance of the carboxylic acid function at position 17 in the biological activity of mersacidin. Finally, the exchange of an aromatic for an aliphatic hydrophobic residue at position 3 resulted in the mutant peptide F3L mersacidin; this peptide showed only moderately reduced activity.  相似文献   

17.
The lantibiotic (i.e., lanthionine-containing antibiotic) mersacidin is an antimicrobial peptide of 20 amino acids which is produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin inhibits bacterial cell wall biosynthesis by binding to the precursor molecule lipid II. The structural gene of mersacidin (mrsA) and the genes for the enzymes of the biosynthesis pathway, dedicated transporters, producer self-protection proteins, and regulatory factors are organized in a biosynthetic gene cluster. For site-directed mutagenesis of lantibiotics, the engineered genes must be expressed in an expression system that contains all of the factors necessary for biosynthesis, export, and producer self-protection. In order to express engineered mersacidin peptides, a system in which the engineered gene replaces the wild-type gene on the chromosome was constructed. To test the expression system, three mutants were constructed. In S16I mersacidin, the didehydroalanine residue (Dha) at position 16 was replaced with the Ile residue found in the closely related lantibiotic actagardine. S16I mersacidin was produced only in small amounts. The purified peptide had markedly reduced antimicrobial activity, indicating an essential role for Dha16 in biosynthesis and biological activity of mersacidin. Similarly, Glu17, which is thought to be an essential structure in mersacidin, was exchanged for alanine. E17A mersacidin was obtained in good yields but also showed markedly reduced activity, thus confirming the importance of the carboxylic acid function at position 17 in the biological activity of mersacidin. Finally, the exchange of an aromatic for an aliphatic hydrophobic residue at position 3 resulted in the mutant peptide F3L mersacidin; this peptide showed only moderately reduced activity.  相似文献   

18.
19.

Background

Two component lantibiotics, such as the plasmid-encoded lacticin 3147 produced by Lactococcus lactis DPC3147 and staphylococcin C55 produced by Staphylococcus aureus C55, represent an emerging subgroup of bacteriocins. These two bacteriocins are particularly closely related, exhibiting 86% (LtnA1 and C55α) and 55% (LtnA2 and C55β) identity in their component peptides. The aim of this study was to investigate, for the first time for any two component bacteriocins, the significance of the relatedness between these two systems.

Results

So close is this relatedness that the hybrid peptide pairs LtnA1:C55β and C55α:LtnA2 were found to have activities in the single nanomolar range, comparing well with the native pairings. To determine whether this flexibility extended to the associated post-translational modification/processing machinery, the staphylococcin C55 structural genes were directly substituted for their lacticin 3147 counterparts in the ltn operon on the large conjugative lactococcal plasmid pMRC01. It was established that the lacticin LtnA1 post-translational and processing machinery could produce functionally active C55α, but not C55β. In order to investigate in closer detail the significance of the differences between LtnA1 and C55α, three residues in LtnA1 were replaced with the equivalent residues in C55α. Surprisingly, one such mutant LtnA1-Leu21Ala was not produced. This may be significant given the positioning of this residue in a putative lipid II binding loop.

Conclusion

It is apparent, despite sharing striking similarities in terms of structure and activity, that these two complex bacteriocins display some highly dedicated features particular to either system.  相似文献   

20.
The lantibiotics are a rapidly expanding group of biologically active peptides produced by a variety of Gram-positive bacteria, and are so-called because of their content of the thioether amino acids lanthionine and β-methyllanthionine. These amino acids, and indeed a number of other unusual amino acids found in the lantibiotics, arise following post-translational modification of a ribosomally synthesised precursor peptide. A number of genes involved in the biosynthesis of these highly modified peptides have been identified, including genes encoding the precursor peptide, enzymes responsible for specific amino acid modifications, proteases able to remove the leader peptide, ABC-superfamily transport proteins involved in lantibiotic translocation, regulatory proteins controlling lantibiotic biosynthesis and proteins that protect the producing strain from the action of its own lantibiotic. Analysis of these genes and their products is allowing greater understanding of the complex mechanism(s) of the biosynthesis of these unique peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号