共查询到20条相似文献,搜索用时 15 毫秒
1.
Sentman ML Granström M Jakobson H Reaume A Basu S Marklund SL 《The Journal of biological chemistry》2006,281(11):6904-6909
Mice lacking the secreted extracellular superoxide dismutase (EC-SOD) or the cytosolic copper- and zinc-containing SOD (CuZn-SOD) show relatively mild phenotypes. To explore the possibility that the isoenzymes have partly overlapping functions, single and double knockout mice were examined. The absence of EC-SOD was found to be without effect on the lifespan of mice, and the reduced lifespan of CuZn-SOD knockouts was not further shortened by EC-SOD deficiency. The urinary excretion of isoprostanes was increased in CuZn-SOD knockout mice, and plasma thiobarbituric acid-reactive substances levels were elevated in EC-SOD knockout mice. These oxidant stress markers showed potentiated increases in the absence of both isoenzymes. Other alterations were mainly found in CuZn-SOD knockout mice, such as halved glutathione peroxidase activity in the tissues examined and increased glutathione and iron in the liver. There were no changes in tissue content of the alternative superoxide scavenger ascorbate, but there was a 25% reduction in ascorbate in blood plasma in mice lacking CuZn-SOD. No increase was found in the urinary excretion of the terminal metabolites of NO, nitrite, and nitrate in any of the genotypes. In conclusion, apart from the increases in the global urinary and plasma oxidant stress markers, our phenotype studies revealed no other evidence that the copper- and zinc-containing SOD isoenzymes have overlapping roles. 相似文献
2.
Using UV absorption spectroscopy, first derivative spectroscopy, and UV difference spectroscopy, the active site of human superoxide dismutase is probed. First derivative spectra (dA/d lambda versus lambda) show the HESOD spectrum to be a composite of Phe and Trp absorbance. The 278 and 288 nm Trp absorbance peaks are sensitive to solvent polarity. A 5-10% decrease in these peaks accompanies copper removal from the active site indicating greater solvent access to Trp in the apoenzyme than the holoenzyme. A Trp UV difference peak at 305-310 nm documents the presence or absence of copper at the active site, and documents also the movement of a nonbridging copper-binding His (His 46 or 120) when HESOD is inhibited by azide or when the copper moiety is reduced. Trp absorbances indicate that neither cyanide nor KCl inhibition affects the Cu(II)-His bonds. Phe UV absorbance is increased by the presence of copper at the active site and increased further by the addition of cyanide or azide. Neither Trp nor Phe responds to the presence of zinc in the active site. A molecular graphics program, FRODO, shows Trp and the four Phe residues lying in an approximate ring around the active site of HESOD and thus excellently placed to report on active site perturbations. 相似文献
3.
ESCA core line spectra was obtained for citrate, dipicolinate and tripolyphosphate salts. The mode of coordination of these species with calcium ions was assessed from the changes in the binding energies of the different core levels, as well as from the changes in the profiles of their spectral envelopes. The formation constants of both normal and protonated chelates of these anions with calcium and magnesium ions were determined at 30 °C. The free energy changes for these species are discussed in terms of the electrostatic model and correlated with the effective anionic charges of the different ligands. 相似文献
4.
X-ray photoelectron spectroscopic properties of Hg-thionein 总被引:1,自引:0,他引:1
5.
Phosphate was reported to be an inhibitor of copper- and zinc-containing superoxide dismutase (SOD) [de Freitas, D.M., & Valentine, J.S. (1984) Biochemistry 23, 2079-2082]. Thus SOD activity, in 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.4), was decreased by approximately 50% when the assay was made 10 mM in phosphate, and the ionic strength was adjusted with sodium fluoride. The inhibitory effect of phosphate was attributed to the neutralization of the positive charge on the guanidino residue of Arg-141. We have reexamined the effects of phosphate inhibition of SOD and found that the enzyme has identical activity in phosphate or HEPES buffer when the ionic strength is adjusted with NaBr. The putative inhibitory effect of phosphate appears to have been due to fluoride inhibition of the superoxide generating system of xanthine/xanthine oxidase. We have confirmed this result by using a photochemical generation of O2- in addition to the enzymatic generation of O2-. Chemical modification of the lysine residues to homoarginines does not affect the activity of the enzyme and does not impart a phosphate sensitivity. Chemical modification with phenylglyoxal caused approximately 80% inactivation of the native enzyme and 90% inactivation of the O-methylisourea-modified enzyme. Our results suggest that phosphate does not inhibit the copper- and zinc-containing superoxide dismutase (Cu,Zn-SOD) beyond the expectations of its effect on ionic strength. 相似文献
6.
7.
Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis 总被引:21,自引:1,他引:20
Jayne L. Farrant Assunta Sansone James R. Canvin Mark J. Pallen Paul R. Langford Timothy S. Wallis Gordon Dougan & J. Simon Kroll 《Molecular microbiology》1997,25(4):785-796
Copper/zinc-cofactored superoxide dismutase ([Cu,Zn]-SOD) has been found in the periplasm of many bacterial species but its biological function is unknown. Here we report the cloning and characterization of sodC , encoding [Cu,Zn]-SOD, from Salmonella typhimurium . The predicted protein sequence shows only 58% identity to Escherichia coli SodC, and from this its chromosomal location and its immediate proximity to a phage gene, sodC , in Salmonella is speculated to have been acquired by bacteriophage-mediated horizontal transfer from an unknown donor. A sodC mutant of S . typhimurium was unimpaired on aerobic growth in rich medium but showed enhanced sensitivity in vitro to the microbicidal action of superoxide. S . typhimurium , S . choleraesuis and S . dublin sodC mutants showed reduced lethality in a mouse model of oral infection and persisted in significantly lower numbers in livers and spleens after intraperitoneal infection, suggesting that [Cu,Zn]-SOD plays a role in pathogenicity, protecting Salmonella against oxygen radical-mediated host defences. There was, however, no observable difference compared with wild type in the interaction of sodC mutants with porcine pleural, mouse peritoneal or J774 macrophages in vitro , perhaps reflecting the hierarchical capacity of different macrophage lines to kill Salmonella , the most efficient overwhelming the proposed protective effect of periplasmic SOD. 相似文献
8.
Shi L Xia Y Zhang M Yin SJ Si YX Qian GY Lü ZR Zhou HM Park D Chng G Zou F Park YD 《Protein and peptide letters》2011,18(7):726-732
Superoxide dismutase (SOD, EC 1.15.1.1) plays an important antioxidant defense role in organisms exposed to oxygen. Copper- and zinc-containing SOD (Cu/Zn-SOD) catalysis and the change in folding behavior of this enzyme in response to inactivators are therefore of interest. We studied the inhibitory effects of trifluoroethanol (TFE) on the activity and conformation of a Cu/Zn-SOD from Bos taurus. We found that TFE inactivated the enzyme and disrupted the tertiary and secondary structures of Cu/Zn-SOD. Kinetic studies showed that TFE-induced inactivation of Cu/Zn-SOD follows first-order reaction kinetics and that TFE binding sites are distinct from the copper- and zinc-containing active site. These structural changes occurred prior to enzyme activity loss. A computational docking simulation of Cu/Zn-SOD and TFE (binding energy of Dock 6.3: -11.52 kcal/mol) suggested that THR37, ASP40, and GLU119, which are located near the active site, interact with TFE. Evaluation of the ligand binding kinetics of Cu/Zn-SOD during unfolding in the presence of TFE combined with computational prediction allowed us to gain insight into the inactivation of Cu/Zn-SOD. 相似文献
9.
Lipophilic ionophore complexes as superoxide dismutase mimetics 总被引:3,自引:0,他引:3
Fisher AE Lau G Naughton DP 《Biochemical and biophysical research communications》2005,329(3):930-933
A wide range of metal ion complexes exhibit superoxide dismutase like activities as detected by inhibition of nitroblue tetrazolium reduction. Mn(II) and Cu(II) complexes of EDTA, EHPG, and EGTA exhibit SOD like activities commensurate with many of the purpose-built SOD mimics. Here, we report analogous lipophilic chelators that localise metal ions (Cu(II), Mn(II), and Fe(III)) in the lipid membranes and lipoproteins to protect them from superoxide mediated oxidative damage. Spectroscopic titrations and Jobs method confirm that both 1:1 and 2:1 metal ion monensin complexes form. The cupric complexes are the most active exhibiting IC(50) values of 0.09 and 0.18 microM for 2Cu(II)-monensin and Cu(II)-monensin, respectively, for superoxide destruction. In addition, the IC(50) value for Mn(II)-monensin is 0.31 microM. In conclusion, Mn(II) and Cu(II) complexes of the ionophore monensin exhibit considerable superoxide scavenging activities and represent a novel class of catalytic antioxidants for the protection of lipid structures. 相似文献
10.
An understanding of the metabolic fate of radiometal-labeled peptides is important due to their application in the areas of diagnostic imaging and targeted radiotherapy. Radioisotopes of copper ((64)Cu, T(1/2) = 12.7 h; (67)Cu, T(1/2) = 62 h) have been labeled to monoclonal antibodies (mAbs) and peptides and have applications in the areas of PET imaging and targeted radiotherapy of cancer. Copper-64-TETA-D-Phe(1)-octreotide ([(64)Cu]TETA-OC) has been shown to bind to the somatostatin receptor, both in vitro and in vivo, and this agent inhibited the growth of somatostatin-receptor positive tumors in rats. Copper-64-TETA-OC, however, showed a retention of activity in the blood, liver, and bone marrow, suggesting possible dissociation of (64)Cu from TETA-OC in vivo. The purpose of this study was to determine if (64)Cu dissociates from [(64)Cu]TETA-OC and binds to the protein, superoxide dismutase (SOD) in rat liver. The liver metabolism of [(64)Cu]TETA-OC was examined in normal rats using a gel-electrophoresis assay specific for SOD and size-exclusion chromatography. The major metabolite in rat liver at 20 h postinjection had a molecular weight of 32 kDa as shown by size-exclusion chromatography. A gel electrophoresis assay specific for the detection of SOD [nitro-blue tetrazolium (NBT)] showed that a (64)Cu-labeled protein isolated from rat liver homogenates comigrated with SOD. Evaluating the metabolic fate of copper radiopharmaceuticals demonstrated that Cu(II) dissociates from macrocyclic chelators such as TETA and binds to proteins in high concentrations, namely SOD in rat liver. 相似文献
11.
Patel RN Singh N Shukla KK Chauhan UK Chakraborty S Niclós-Gutiérrez J Castiñeiras A 《Journal of inorganic biochemistry》2004,98(2):231-237
X-band electron spin resonance (ESR) and electronic spectra of oxalatobridged heterodinuclear Cu-Ni and Cu-Zn complexes, viz., [(PMDT)Cu-Ox-Ni(PMDT)](BPh(4))(2).2CH(3)CN and [(PMDT)Cu-Ox-Zn(PMDT)](BPh(4))(2).2CH(3)CN, where PMDT=pentamethyldiethylenetriamine, Ox=oxalate ion have been described. Complex [(PMDT)Cu-Ox-Ni(PMDT)](BPh(4))(2).2CH(3)CN has been structurally characterized. This complex crystallizes in the monoclinic space group, C(2) (No. 5) with the unit parameters a=20.445(4) A, b=14.884(3) A, c=23.174(5) A, alpha=90 degrees, beta=102.693(4) degrees, gamma=90 degrees, V=6880(2) A(3) and Z=4. The structure refined to R=0.0354 and R(w)=0.0853 for 21,109 reflections with I>2 sigma(I) using 765 parameters, shows the presence of a MN(3)O(2) chromophore in a distorted trigonal-bipyramidal (TBP) heterometallic complex with oxalate dianion. Taking with an equatorial Cu-O=2.137(8) A and an axial Cu-O=1.961(6) A coordination site at Cu(II) ion and equatorial Ni-O=2.178(7) A and axial Ni-O=1.994 (9) A coordination site at Ni(II) ion. The Cu-Ni distance is 5.3532(9) A and Cu-C(2)O(4)-Ni unit is planar. The [(PMDT)Cu-Ox-Ni(PMDT)](2+) shows the ESR spectrum of the antiferromagnetic spin exchange with each dinuclear delocalization of the unpaired electron over the unit and spin-doublet ground state which demonstrates the Cu-Ox-Ni core. Antimicrobial and superoxide dismutase (SOD) activities of these complexes have also been measured. 相似文献
12.
13.
超氧化物歧化酶研究进展 总被引:8,自引:0,他引:8
超氧化物歧化酶是一种广泛存在于生物体内各个组织中的重要金属酶,是一种能够特异性清除机体代谢过程中产生的自由基O2-的抗氧化酶。从SOD的定义及分类,生物化学特性,分子生物学,SOD在各领域中的应用,机体补充外源SOD的途径和SOD的生产方法等几个方面进行了较为全面的综述,最后探讨了目前存在的问题及应用前景。 相似文献
14.
Constantin I. Turta Liudmila F. Chapurina Violeta Voronkova Victor Ch. Kravtsov 《Inorganica chimica acta》2008,361(1):309-316
Copper(II) complexes of general empirical formula, CuX(Hagpa) · nH2O and Cu(agpa) · 2H2O (H2agpa = aminoguanizone of pyruvic acid, X = Cl−, Br−, , CH3COO−, , n = 0, 1, 1.5, 2), have been synthesized and characterized by IR, EPR spectroscopy and X-ray crystallography. The IR spectra of the complexes showed the ONN coordination of the ligand to copper(II) ion. The crystal structures of H2agpa · H2O and complexes [Cu(Hagpa)Br] and [Cu2(Hagpa)2(H2O)2(SO4)] · DMSO showed an invariable conformation and coordination mode for the uninegatively charged tridentate ligand and revealed the formation of linear polymers in which bromide or sulfate anions bridge the copper(II) ions. The EPR spectra for complexes CuX(Hagpa) · nH2O are described by spin Hamiltonian for S = 1/2, without hyperfine structure. The g-tensor is symmetrical for Cu(agpa) · 2H2O, has tri-axial anisotropy for sulfate complexes, and exhibits axial symmetry for the other compounds investigated. 相似文献
15.
Schwartz AL Yikilmaz E Vance CK Vathyam S Koder RL Miller AF 《Journal of inorganic biochemistry》2000,80(3-4):247-256
We are addressing the puzzling metal ion specificity of Fe- and Mn-containing superoxide dismutases (SODs) [see C.K.Vance, A.-F. Miller, J. Am. Chem. Soc. 120(3) (1998) 461–467]. Here, we test the significance to activity and active site integrity of the Gln side chain at the center of the active site hydrogen bond network. We have generated a mutant of MnSOD with the active site Gln in the location characteristic of Fe-specific SODs. The active site is similar to that of MnSOD when Mn2+, Fe3+ or Fe2+ are bound, based on EPR and NMR spectroscopy. However, the mutant’s Fe-supported activity is at least 7% that of FeSOD, in contrast to Fe(Mn)SOD, which has 0% of FeSOD’s activity. Thus, moving the active site Gln converts Mn-specific SOD into a cambialistic SOD and the Gln proves to be important but not the sole determinant of metal-ion specificity. Indeed, subtle differences in the spectra of Mn2+, Fe3+ and 1H in the presence of Fe2+ distinguish the G77Q, Q146A mut-(Mn)SOD from WT (Mn)SOD, and may prove to be correlated with metal ion activity. We have directly observed the side chain of the active site Gln in Fe2+SOD and Fe2+(Mn)SOD by 15N NMR. The very different chemical shifts indicate that the active site Gln interacts differently with Fe2+ in the two proteins. Since a shorter distance from Gln to Fe and stronger interaction with Fe correlate with a lower Em in Fe(Mn)SOD, Gln has the effect of destabilizing additional electron density on the metal ion. It may do this by stabilizing OH− coordinated to the metal ion. 相似文献
16.
The effects of superoxide dismutase (SOD) and catalase on the autoxidation rate of L-ascorbic acid (ASA) in the absence of metal ion catalysts were examined. The stabilization of ASA by SOD was confirmed, and the enzyme activity of SOD, which scavenges the superoxide anion formed during the autoxidation of ASA, contributed strongly to this stabilization. The stabilization of ASA by catalase was observed for the first time; however, the specific enzyme ability of catalase would not have been involved in the stabilization of ASA. Such proteins as bovine serum albumin (BSA) and ovalbumin also inhibited the autoxidation of ASA, therefore it seems that non-specific interaction between ASA and such proteins as catalase and BSA might stabilize ASA and that the non-enzymatic superoxide anion scavenging ability of proteins might be involved. 相似文献
17.
18.
In a preliminary study we tested CuSO4.5H2O, (Cu(II]2[3,5-diisopropylsalicylate]4.2H2O and a number of copper complexes of substituted 1,10-phenanthrolines for superoxide anion dismutase activity. It appeared that this activity depends on the ligands involved and might be governed by the redox potential of the Cu(I) complex/Cu(II) complex couple. The strong superoxide anion dismutase activity of Cu(II)[DMP]2 complex can be expected considering its high redox potential. Rather surprisingly is the superoxide anion dismutase activity of the Cu(I)[DMP]2 complex since it involves oxidation to Cu(II)[DMP]2 complex. From regression analysis it was established that steric and field effects of the substituents of the investigated phenanthrolines play an important role in SOD activity and therefore it is concluded that complex formation is important for the superoxide dismutase-like activity. 相似文献
19.
20.
Steady-state kinetic studies of superoxide dismutases. Saturative behavior of the copper- and zinc-containing protein 总被引:1,自引:0,他引:1
The mechanism of the Cu-Zn-containing superoxide dismutase (SD) was studied using a stopped-flow spectrophotometric system capable of forming aqueous solutions of O2- having initial concentrations up to approximately 5 mM. By lowering the temperature to 5.5 degrees C, we were able to observe saturation of the enzyme. At 5.5 degrees C and pH 9.3, the Michaelis-Menten parameters extracted from the kinetic traces were turnover number (TN) approximately 1 X 10(6) s-1, Km approximately 3.5 X 10(-3) M. Under our conditions, the average rate at which O-2 binds to the active site, TN/Km is 0.26 X 10(9) M-1 s-1. TN was decreased in the presence of D2O, and a solvent isotope effect of TNH/TND approximately 3.6 was measured while TN/Km was essentially unaffected by D2O. TN was increased by the presence of the general acid, ND4+. These observations, by analogy to earlier work with Fe X SD from Escherichia coli (Bull, C., and Fee, J. A. (1985) J. Am. Chem. Soc. 107, 3295-3304), suggest that H2O serves to donate the protons required to form product H2O2. Values of Km and TN for the zinc-deficient enzyme were found to be approximately a factor of 2 less than those obtained for the holoenzyme under identical experimental conditions, whereas TN/Km was largely unchanged. The imidazolate bridge is thus not essential for catalytically competent extraction of a proton from the solvent. 相似文献