首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rapid and selective liquid chromatographic/tandem mass spectrometric method for determination of fosfomycin was developed and validated. Following protein-precipitation, the analyte and internal standard (fudosteine) were separated from human plasma using an isocratic mobile phase on an Ultimate XB-CN column. An API 4000 tandem mass spectrometer equipped with Turbo IonSpray ionization source was used as detector and was operated in the negative ion mode. Multiple reaction monitoring using the precursor to product ion combinations of m/z 137-->79 and m/z 178-->91 was performed to quantify fosfomycin and fudosteine, respectively. The method was linear in the concentration range of 0.10-12.0 microg/mL using 50 microL of plasma. The lower limit of quantification was 0.10 microg/mL. The intra- and inter-day relative standard deviation over the entire concentration range was less than 10.6%. Accuracy determined at three concentrations (0.25, 1.00 and 8.00 microg/mL for fosfomycin) ranged from -1.0% to -4.2% in terms of relative error. Each plasma sample was chromatographed within 5.0 min. The method was successfully used in a bioequivalence study of fosfomycin in human plasma after an oral administration of capsules containing 1.0 g fosfomycin (approximately 1.3g calcium fosfomycin).  相似文献   

2.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

3.
A fast, sensitive and specific LC-MS/MS bioanalytical method for the determination of unchanged clopidogrel in human plasma has been developed and validated over the range of 10-12,000 pg mL(-1) (r2 0.9993) by the Contract Research group at HFL. Samples (0.3 mL) were buffered (pH 6.8), extracted using diethyl ether and 10 microL of the sample extract was injected onto the LC-MS/MS system. Analysis was performed using a C8 column (temperature controlled to 50 degrees C) by gradient elution at a flow rate of 0.9 mL min(-1) over a 3 min run time. Retention times of 1.61 and 1.59 min were observed for clopidogrel and 2H3-clopidogrel (I.S.), respectively. Detection was achieved using a Sciex API 4000, triple quadrupole mass spectrometer, in positive TurboIonspray (electrospray) ionisation mode. Ion transitions were monitored using MRM (multiple reaction monitoring) for clopidogrel (m/z 322-212) and for 2H3-clopidogrel (m/z 327-217). This validated method was used to support a pharmacokinetic study in healthy volunteers.  相似文献   

4.
An HPLC-MS/MS method was developed for the determination of MK-0518 (raltegravir), an HIV integrase inhibitor, in human plasma over the concentration range of 2-1000 ng/mL. Stable isotope labeled (13)C(6)-MK-0518 was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction with hexane:methylene chloride in the 96-well format with a 200 microL plasma sample size. The compounds were chromatographed on an Ace C(18) (50 x 3.0 mm, 3 microm, titanium frits) column with 42.5/57.5 (v/v %) 0.1mM EDTA in 0.1% formic acid/methanol mobile phase at a flow rate of 0.5 mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for MK-0518 (m/z 445-->109) and (13)C(6)-MK-0518 (m/z 451-->367) on an Applied Biosystem API 4000 HPLC-MS/MS was used for quantitation. Intraday precision of standard curve concentrations in five different lots of control plasma was within 3.2%, while accuracy ranged from 94.8 to 106.8%. The mean extraction recovery of spiked plasma samples was 87%. Quality control (QC) samples were stored at -20 degrees C. Initial within day analysis showed QC accuracy within 7.5% of nominal with precision of 3.1% or less. The plasma QC samples were demonstrated to be stable for up to 23 months at -20 degrees C. The method described has been used to support over 18 clinical studies during Phase I through III of clinical development.  相似文献   

5.
We report here a quantitative method for the analysis of ABT-578 in human whole blood samples. Sample preparation was achieved by a semi-automated 96-well format liquid-liquid extraction (LLE) method. Aluminum/polypropylene heat seal foil was used to enclose each well of the 96-well plate for the liquid-liquid extraction. A liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) method with pre-column regeneration was developed for the analysis of sample extracts. Selective reaction monitoring (SRM) of the mass transitions m/z 983-935 and m/z 931-883 was employed for the detection of ABT-578 and internal standard, respectively. The ammonium adduct ions [M + NH(4)](+) generated from electrospray ionization were monitored as the precursor ions. The assay was validated for a linear dynamic range of 0.20-200.75ng/ml. The correlation coefficient (r) was between 0.9959 and 0.9971. The intra-assay CV (%) was between 1.9 and 13.5% and the inter-assay CV (%) was between 4.7 and 11.3%. The inter-assay mean accuracy was between 86.4 and 102.5% of the theoretical concentrations.  相似文献   

6.
A 96-well single-pot protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of muraglitazar, a PPAR alpha/gamma dual agonist, in human plasma. The internal standard, a chemical analogue, was dissolved in acetonitrile containing 0.1% formic acid. The solvent system was also served as a protein precipitation reagent. Human plasma samples (0.1 mL) and the internal standard solution (0.3 mL) were added to a 96-well plate. The plate was vortexed for 1 min and centrifuged for 5 min. Then the supernatant layers were directly injected into the LC/MS/MS system. The chromatographic separation was achieved isocratically on a Phenomenox C18(2) Luna column (2 mm x 50 mm, 5 microm). The mobile phase contained 20/80 (v/v) of water and acetonitrile containing 0.1% formic acid. Detection was by positive ion electrospray tandem mass spectrometry on a Sciex API 3000. The standard curve, which ranged from 1 to 1000 ng/mL, was fitted to a 1/x weighted quadratic regression model. This single-pot approach effectively eliminated three time consuming sample preparation steps: sample transfer, dry-down, and reconstitution before the injection, while it preserved all the benefits of the traditional protein precipitation. By properly adjusting the autosampler needle offset level, only the supernatant was injected, without disturbing the precipitated proteins in the bottom. As a result, the quality of chromatography and column life were not compromised. After more than 600 injections, there was only slightly increase of column back-pressure. The validation results demonstrated that this method was rugged and provide satisfactory precision and accuracy. The method has been successfully applied to analyze human plasma samples in support of a first-in-man study. This method has also been validated in monkey and mouse plasma for the determination of muraglitazar.  相似文献   

7.
A new drug, quick-acting anti-motion capsule (QAAMC) composed of d-amphetamine sulfate, dimenhydrinate and ginger extraction has been studied for anti-motion-sickness use. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of d-amphetamine and diphenhydramine, the main effective components of the QAAMC, using pseudoephedrine as the internal standard. The analytes and internal standard were isolated from 200 microL plasma samples by a simple liquid-liquid extraction (LLE). Reverse-phase HPLC separation was accomplished on a Zorbax SB-C18 column (100 mm x 3.0 mm, 3.5 microm) with a mobile phase composed of methanol-water-formic acid (65:35:0.5, v/v/v) at a flow rate of 0.2 mL/min. The method had a chromatographic total run time of 5 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 136.0-->91.0 (D-amphetamine), 256.0-->167.0 (diphenhydramine) and 166.1-->148.0 (IS) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 0.5 ng/mL for d-amphetamine and 1 ng/mL for diphenhydramine, with good linearity in the range 0.5-200 ng/mL for D-amphetamine and 1-500 ng/mL for diphenhydramine (r(2)> or =0.9990). All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of the QAAMC in beagle dogs.  相似文献   

8.
The clinical development of a sensitizer for photodynamic therapy (PDT) requires the structural identification of the photoproducts and their quantification in biological fluids and tissues. We describe the LC-MS identification of the most important photoproducts of a cationic phthalocyanine sensitizer (RLP068/Cl) and a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of the main photoproduct (the cationic phthalimide derivative 3-[(1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl)oxy]-N,N,N-trimethylbenzenaminium chloride) in rabbit plasma. The tri-deuterated product was used as co-eluting internal standard. The cationic photoproduct was isolated from plasma samples by protein precipitation with perchloric acid in methanol (7%, v/v). HPLC step was performed on a Phenomenex Synergi Hydro-RP column (20 mm x 2.0 mm, 2 microm particles) with a mobile phase of 0.5% (v/v) aqueous TFA/methanol (85:15, v/v). Flow rate was 0.2 mL/min and 40 microL injection were performed. Run time was 10 min. Detection was achieved by means of a Bruker Esquire 3000+ ion trap mass spectrometer equipped with an ESI source working in positive mode. A multiple reaction monitoring method following the transitions 297.1 --> 282.1 for the analyte and 300.1 --> 282.1+285.1 for the internal standard was used. The analytical method was validated over the concentration range 0.46-91.2 ng/mL and lower limits of detection (LLOD) and quantification (LLOQ) respectively of 0.2 and 0.5 ng/mL were found.  相似文献   

9.
An HPLC-MS/MS assay for the determination of an HIV integrase inhibitor, 5-(1,1-dioxido-1,2-thiazinan-2-yl)-N-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide (I) in human plasma has been developed and validated. Compound I and a stable isotope labeled internal standard (II) were isolated from 0.5 mL plasma samples by solid phase extraction using an Ansys SPEC C-8 96-well plate. Extracts were separated on a Hypersil BDS C-18 HPLC column (3.0 mmx50 mm, 3 microm) with a mobile phase consisting of 25 mM ammonium formate pH 3.0:acetonitrile (60:40) vol%/vol% pumped at 0.5 mL/min. A Sciex API 365 mass spectrometer equipped with an atmospheric pressure chemical ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 431-->109 (I) and m/z 437-->115 (II) used for quantitation. The assay was validated over the concentration range of 10-5000 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was 69%. The intra-day accuracy of the assay was within 4% of nominal and intra-day precision was better than 4% C.V. Following a 200 mg dose of the compound administered to human subjects, concentrations of I ranged from 21.1 to 1500 ng/mL in plasma samples collected up to 12 h after dosing. Inter-day accuracy and precision results for quality control samples run over a 3-month period alongside clinical samples showed mean accuracies of within 6% of nominal and precision better than 3.5% C.V.  相似文献   

10.
A sensitive method for the determination of Cloretazine (VNP40101M) and its metabolite (VNP4090CE) with an internal standard (ISTD) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Acidified plasma samples (500 microL) were prepared using solid phase extraction (SPE) columns, and 25 microL of the reconstituted sample was injected onto an Ascentis C18 HPLC column (3 microm, 5 cmx2.1 mm) with an isocratic mobile phase. Analytes were detected with an API-3000 LC-MS/MS System at unit (Q1) and low (Q3) resolution in negative multiple reaction monitoring mode: m/z 249.0 (precursor ion) to m/z 114.9 (product ion) for both Cloretazine (at 3.64 min) and VNP4090CE (at 2.91 min), and m/z 253.0 (precursor ion) to m/z 116.9 (product ion) for the ISTD. The mean recovery for Cloretazine (VNP40101M) and its metabolite (VNP4090CE) was greater than 87% with a lower limit of quantification of 1.0 ng/mL for Cloretazine (S/N=9.7, CV相似文献   

11.
To support pharmacokinetic studies, a selective and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of a novel KDR kinase inhibitor (1) and its active metabolite (2) in human plasma. The method is fully automated using a Packard MultiPROBE II system and a TomTec Quadra 96 liquid handling workstation to perform sample preparation and solid-phase extraction (SPE). Following the extraction on a mixed-mode SPE using Oasis MCX 96-well plate, the analytes were separated on a Aquasil C18 column (50 mm x 2.1 mm, i.d., 3 microm) with a mobile phase consisting of acetonitrile/ammonium acetate buffer (5 mM, pH 5.0) (60/40, v/v). The run time for each injection was 4.5 min with the retention times of approximately 2.0 and 2.7 min for 1 and 2 respectively, at a flow rate of 0.25 mL/min. A tandem mass spectrometric detection was conducted using multiple reaction monitoring (MRM) under the positive ion mode with a turbo ion-spray interface. The linear ranges of the calibration curves were 0.05-400 ng/mL for 1 and 0.1-400 ng/mL for 2 on a PE Sciex API 4000 LC-MS/MS system. The lower limits of quantitation (LLOQ) of the assay were 0.05 and 0.1 ng/mL for 1 and 2 respectively, when 0.4 mL of plasma was processed. Intra-day assay precision (using five standard curves prepared by spiking compounds to five lots of plasma) was less than 4.9% for 1 and less than 9.6% for 2 on each concentration. Assay accuracy was found to be 95.1-104.6% of nominal for 1 standards and 93.5-105.6% for 2 standards. QC samples were stable when kept at room temperature for 4 h, at -70 degrees C for 10 days, and after three freeze-thaw cycles. The extraction recoveries were 80%, 83% and 84% for 1 and 2 and I.S. respectively, and no significant matrix effects were observed. The method was successfully applied to plasma samples from clinical studies after oral administration of compound 1.  相似文献   

12.
Bestatin is a low molecular weight aminopeptidase inhibitor originally isolated from culture filtrates of Streptomyces olivoreticuli. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of bestatin in rat plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 50 microL plasma samples by solid phase extraction (SPE). Reverse-phase HPLC separation was accomplished on a Lichrospher C18 column (4.6 mm x 50 mm, 5 microm) with a mobile phase composed of methanol-water-formic acid (70:30:0.5, v/v/v) at a flow rate of 0.8 mL/min. The method had a chromatographic total run time of 3 min. A Varian 1200L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 309.2-->120.0 (bestatin) and 313.4-->138.0 (granisetron) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 5 ng/mL, with good linearity (r2 >or= 0.999) over the linear range of 5-2000 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of bestatin in rats.  相似文献   

13.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

14.
A rapid and sensitive LC-MS/MS method for the quantification of ondansetron was developed and validated. The plasma samples were treated by a semi-automated liquid-liquid extraction (LLE) in 1.2 mL 96-well format micro-tubes. Ondansetron and the internal standard (IS) granisetron were analyzed by combined reversed phase LC-MS/MS, with positive ion electrospray ionization, using multiple reactions monitoring (MRM). The statistical evaluation for this method reveals excellent linearity, accuracy and precision values for the range of concentrations 0.25-40.0 ng/mL. The proposed method enabled the reliable determination of ondansetron in bioequivalence studies after per os administration of a 4 or 8 mg tablet.  相似文献   

15.
A sensitive method for the determination of lapatinib (GW572016) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Plasma samples (100 microL) were prepared using solid phase extraction (SPE) columns, and 6.0 microL of the reconstituted eluate was injected onto a Phenomenex CuroSil-PFP 3 mu analytical column (50 mm x 2.0mm) with an isocratic mobile phase. Analytes were detected with a PE SCIEX API-365 LC-MS/MS system at unit (Q1) and low (Q3) resolution in positive multiple reaction monitoring mode (m/z 581 (precursor ion) to m/z 364 (product ion) for lapatinib). The mean recovery for lapatinib was 75% with a lower limit of quantification of 15 ng/mL (S/N=11.3, CV< or =14%). This method was validated over a linear range of 100-10,000 ng/mL, and results from a 5-day validation study demonstrated good within-day and between-day precision and accuracy. This method has been used to measure plasma lapatinib concentrations in a Phase I study in children with cancer.  相似文献   

16.
High throughput LC-MS/MS assays to quantitate a new alpha(nu)beta(3) bone integrin antagonist (I) in human plasma and urine have been developed using instruments programmed to automate sample preparation procedures. Packard liquid handling system-MultiPROBE II EX was programmed for preparing calibration standards in control plasma and urine, acidifying all standards, quality control (QC), and clinical samples with necessary dilutions, and adding the internal standard to the acidified samples. TOMTEC Quadra 96 was programmed to perform the solid phase extraction (SPE) process on a 3M 96-well mixed phase cation standard density (MPC-SD) plate to isolate the analytes from the sample matrix. The extract collected from both types of matrices was directly injected into reversed-phase LC-MS/MS system with a Turbo Ion Spray (TIS) interface in the positive ionization mode. The plasma and urine assays have the calibration range of 0.5-1500 and 2-6000 ng/mL, respectively. Validation of the automated and the manual plasma assays showed that application of MultiPROBE II to sample preparation gave comparable accuracy and precision. Overall, the automated approaches with minimum manual intervention enhanced the throughput of sample preparation.  相似文献   

17.
Sensitive and selective methods based on high performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection were developed for the determination of vitamin D(3) in human serum. Derivatization of vitamin D(3) and its stable isotope labeled internal standard provided highly sensitive quantification and selective detection from endogenous compounds. Samples were prepared using the in-tube liquid-liquid extraction (LLE), 96-well plate LLE, and in-tip solid phase micro-extraction (SPME) in 96-well format. In all methods, the MS/MS detection was performed using Applied Biosystems-Sciex API 3000 tandem mass spectrometers interfaced with a heated nebulizer probe and operated in the positive ionization mode. Both tube and plate LLE methods achieved a lower limit of quantitation (LLOQ) of 0.5 ng/mL when 1.0 and 0.4 mL of human serum was processed, respectively, and were validated in the concentration range of 0.5-25 ng/mL; while for the in-tip SPME method, LLOQ was 5 ng/mL with only 0.1 mL of human serum required. Comparisons were made among three different methods, including precision and accuracy, sample throughput, recovery and matrix effects.  相似文献   

18.
Vitamin D therapy is widely used for the treatment of hyperparathyroidism associated with chronic renal failure in renal disease patients. The vitamin D prodrug, 1α-hydroxyvitamin D(2) (1α(OH)D(2)), is used for the treatment of the end stage renal disease patients who as a result of impaired kidney function cannot convert the naturally occurring vitamin D to the active hormonal form namely 1,25-dihydroxyvitamin D(2) (1,25(OH)(2)D(2)). The systemic circulating levels of this active form are in the pg/mL range and represent a significant bioanalytical challenge for therapeutic monitoring. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is considered the gold standard for the selective and sensitive determination of small molecule therapeutics in biological matrices. However, the reported LC-MS/MS bioanalytical assays for 1,25(OH)(2)D(2) suffer from extensive sample preparation procedures or derivatization protocols to achieve the requisite sensitivity and selectivity. In this paper, we describe an assay that employs 96-well plate solid phase extraction sample preparation combined with highly sensitive LC-MS/MS instrumentation. The utility of ultra high pressure liquid chromatography to reduce the analytical run time was also demonstrated. Employing this assay a lower limit of quantitation of 25.0 pg/mL using 300 μL sample aliquot of rat serum was achieved with linearity obtained over the range of 25.0-1000 pg/mL. Both intra-day and inter-day coefficients of variation were <15% and accuracy across the assay range was within 100±7.24%. The application of the assay was demonstrated for the analysis of 1,25(OH)(2)D(2) rat serum samples to support pharmacokinetic studies conducted at doses down to sub-microgram per kilogram of 1α(OH)D(2).  相似文献   

19.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection (LC-MS/MS) was developed for the determination of a potent 5-HT(1B/1D) receptor agonist, rizatriptan in human plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 100 microL plasma samples by liquid-liquid extraction (LLE) and chromatographed on a Lichrospher C18 column (4.6mm x 50mm, 5 microm) with a mobile phase consisting of acetonitrile-10mM aqueous ammonium acetate-acetic acid (50:50:0.5, v/v/v) pumped at 1.0 mL/min. The method had a chromatographic total run time of 2 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 270-->201 (rizatriptan) and 313.4-->138 (granisetron) used for quantitation. The assay was validated over the concentration range of 0.05-50 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was above 98%. The intra-day accuracy of the assay was within 12% of nominal and intra-day precision was better than 13% C.V. Following a 10mg dose of the compound administered to human subjects, mean concentrations of rizatriptan ranged from 0.2 to 70.6 ng/mL in plasma samples collected up to 24h after dosing. Inter-day accuracy and precision results for quality control samples run over a 5-day period alongside clinical samples showed mean accuracies of within 12% of nominal and precision better than 9.5% C.V.  相似文献   

20.
A fast, sensitive, and enantioselective LC-MS/MS bioanalytical method was developed and validated for the direct determination of individual alprenolol enantiomers in human plasma using cellobiohydrolase (CBH) chiral stationary phases (CSP) along with supported liquid extraction (SLE) procedures. Complete baseline separation of enantiomeric alprenolol was achieved within 2 min in reversed phase chromatography at 0.9 ml/min. SLE in a 96-well plate format was used for sample extraction. The method validation was conducted over the curve range of 0.500-500 ng/ml for each alprenolol enantiomer using 0.0500 ml of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed < or = 7.3% relative standard deviation (RSD) and -6.2 to 8.0% relative error (RE) for both alprenolol enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号