首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Culture fluids obtained from submerged cultures of white, brown and gray wood rot fungi were assayed for the presence of cellulolytic activity complexes against the model substrated carboxymethylcellulose-Na and Standard Whatman cellulose and natural substrates, i.e. celluloses isolated from pine bark and sawdust. The cellulolytic activity of the examined fungal species was highly differentiated. The use of model and natural substrates allowed determination of the high substrate specificity of the cellulase complexes produced by the fungi. Not all the fungi were found to produce EC 3.2.1.4. endo-1, 4-beta-glucanase under the culture conditions employed. All the fungi were, however, able to produce a complex of EC 3.2.1.4. exo-1, 4-beta-glucanases. All the examined fungi were also able to degrade, although to a varied extent, such higher forms of cellulose as Standard Whatman cellulose or natural celluloses isolated from pine bark and sawdust. Determination of the cellulolytic activity of fungi against the above-mentioned specific natural substrates affords the possibility of their practical use.  相似文献   

2.
For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocytogenes, Salmonella enterica subsp. enterica serotype Enteritidis, and Escherichia coli. Four organic waste mixtures, containing various proportions of paper and cardboard, fruits and vegetables, and green waste, were composted in laboratory reactors with forced aeration. The physicochemical and microbiological parameters were monitored for 12 weeks during composting. The survival of bacteria over a 3-month period at 25 degrees C was assessed with samples collected after different experimental composting times. Strain survival was also monitored in mature sterilized composts. Nonsterile composts did not support pathogen growth, but survival of seeded pathogens was observed. Salmonella serovar Enteritidis survived in all composts, and longer survival (3 months) was observed in mature composts (8 and 12 weeks of composting). Mature biowaste composts may support long-term survival of Salmonella serovar Enteritidis during storage at room temperature. E. coli and L. monocytogenes survival was observed only in 4-week-old composts and never in older composts. Proper composting may prevent long-term survival of E. coli and L. monocytogenes. These results suggest that like composted sewage sludge or manure, domestic waste composts may support pathogen survival. Survival was not related to the physicochemical characteristics of the composts.  相似文献   

3.
The biological oxidation of elemental sulphur (S(o)) added to three alkaline composts prepared with a range of organic wastes (CC, melon crop residues; MC, mixed manures; and BC, pine bark) to reduce their pH was studied. The titration curves showed that to achieve an equivalent pH drop, compost CC needed a larger dose of S(o) than did composts MC and BC. The acidification efficiency was high in the three composts (53%), but the pH reduction obtained from the titration curves in MC and BC composts was lower than expected. S(o) oxidation in amended composts was found to be related to pH and CaCO(3) content decreases, and to the rise in CaSO(4) and electrical conductivity levels. A remarkable increase in the autotrophic bacteria population and a slight increase in heterotrophic bacteria along with S(o) oxidation were recorded. Actinomycetes, fungi and yeasts were not affected by the addition of S(o) to composts.  相似文献   

4.
AIMS: The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. METHODS AND RESULTS: The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. CONCLUSIONS: Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. SIGNIFICANCE AND IMPACT OF THE STUDY: Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.  相似文献   

5.
There have been some scientific reports suggesting that dual inoculations with arbuscular mycorrhizal (AM) and saprophytic soil fungi may cause an additive or synergistic growth enhancement of the inoculated host plant. Some Trichoderma spp. have shown antagonistic potential against pathogenic fungi and a beneficial effect on plant growth. Joint inoculations of the mycorrhizal fungus Glomus intraradices Schenck and Smith, isolated from a citrus nursery (Tarragona, Spain) and a strain of Trichoderma aureoviride Rifai, isolated from an organic compost, were tested on a citrus rootstock, Citrus reshni Hort. ex Tan. The interactions between both microorganisms and their influence on mycorrhizal root colonization and plant growth enhancement, the changes produced in the soil microbial activity, like esterase, trehalase, phosphatase and chitinase activities, and on microbial populations were evaluated in three organic substrates: (1) sphagnum peat and autoclaved sandy soil (1/1, v/v), (2) sphagnum peat, quartz sand and perlite (1/1/1, v/v) and (3) pine bark compost (BVU, Prodeasa Product). Substrate characteristics were more important than the AM inoculation treatment in the determination of enzyme activity. In bark compost, the number of bacterial colonies obtained on soil-dilution plates was significantly higher than in peat and sand mixtures. Inoculation with T. aureoviride alone produced no significant effect on growth enhancement of C. reshni. However, dual inoculation with both, T. aureoviride and G. intraradices significantly increased plant growth in two of the substrates used and was the best treatment in pine bark amended compost. The inoculation with T. aureoviride did not affect the development of mycorrhizal root colonization. These results show a synergistic effect of G. intraradices and T. aureoviride on the growth of C. reshni in organic substrates and indicate the potential benefits of using combined inoculations.  相似文献   

6.
For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocytogenes, Salmonella enterica subsp. enterica serotype Enteritidis, and Escherichia coli. Four organic waste mixtures, containing various proportions of paper and cardboard, fruits and vegetables, and green waste, were composted in laboratory reactors with forced aeration. The physicochemical and microbiological parameters were monitored for 12 weeks during composting. The survival of bacteria over a 3-month period at 25°C was assessed with samples collected after different experimental composting times. Strain survival was also monitored in mature sterilized composts. Nonsterile composts did not support pathogen growth, but survival of seeded pathogens was observed. Salmonella serovar Enteritidis survived in all composts, and longer survival (3 months) was observed in mature composts (8 and 12 weeks of composting). Mature biowaste composts may support long-term survival of Salmonella serovar Enteritidis during storage at room temperature. E. coli and L. monocytogenes survival was observed only in 4-week-old composts and never in older composts. Proper composting may prevent long-term survival of E. coli and L. monocytogenes. These results suggest that like composted sewage sludge or manure, domestic waste composts may support pathogen survival. Survival was not related to the physicochemical characteristics of the composts.  相似文献   

7.
Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spent mushroom composts as well as certain biosolids, cow manure, chicken-cow manure, and leaf-chicken manure composts were not suppressive to Pythium damping-off. In some cases, turkey litter, chicken manure, chicken-leaf, and food waste composts were inhibitory to creeping bentgrass seed germination in laboratory experiments. Microbial populations varied among all of the composts tested. Bacterial populations were high in all composts except the turkey litter compost, in which populations were 1,000- to 10,000-fold lower than in the other composts tested. Among the highest populations of heterotrophic fungi and antibiotic-producing actinomycetes were those found in all batches of the brewery sludge compost, whereas the lowest populations were found in turkey litter, chicken manure, and food waste composts. Heat treatment of suppressive composts reduced populations of bacteria, fungi, and actinomycetes in all composts tested. Disease suppressiveness was also reduced or eliminated in heated composts. Amending heated composts with small amounts of nonheated compost restored suppressive properties and partially restored microbial populations to wild-type levels. A strong negative relationship between compost microbial activity (as measured by the hydrolysis of fluorescein diacetate) and Pythium damping-off severity was observed. When composts were applied to creeping bentgrass in field experiments, a significant level of suppressiveness was evident with some composts when disease pressure was high (i.e., disease ratings high in uninoculated plots). A 1991 batch of turkey litter compost and the 1990 batch of Endicott biosolids were consistently suppressive to foliar symptoms of Pythium root rot on creeping bentgrass. This study indicates that suppression of Pythium diseases of creeping bentgrass in batches of brewery sludge and Endicott biosolids composts, and possibly in other suppressive composts examined in less detail in this study, is related directly to the microbial activities in the composts. On the other hand, the mechanisms of Pythium suppression in turkey litter and perhaps other poultry-based composts is not related directly to the compost microbial activity. Although turkey litter showed a lack of suppressiveness in laboratory bioassays and low microbial populations and activity, it resulted in a significant and consistent level of suppressiveness in field experiments. Therefore, the microbiological properties of Pythium-suppressive composts may differ substantially, and measurements of microbial populations and activity may not be predictive of the level of disease suppression in all composts.  相似文献   

8.
Summary Helleri holly were grown in 100% sand, 50% bark-50% sand, and 100% bark media and inoculated with Pythium irregulaye Buis. Pythium populations were determined at 4, 10 and 17 cm depths at planting date and every two weeks thereafter. After 7 weeks fresh weight of plants and populations of bacteria, actinomycetes, and total fungi were determined. P. irregulare was highest at the 4 and 10 cm depths, with bark media reaching their highest Pythium levels 4 weeks after inoculation. Pythium peaked in 100% sand 6 weeks after inoculation and declined thereafter.Total bacteria increased with an increase in percent bark and were the predominant microbes. Actinomycetes comprised a greater proportion of the microbial population in sand and bark-sand media than in 100% pine bark. Total fungi were greatest in the 50% bark-50% sand medium. Fresh weight of Helleri holly increased with an increase in the percent bark in the medium.Portion of dissertation submitted in partial fulfillment of the requirements of Ph.D. in Plant Science.Graduate Assistant, Associate Horticulturist, and Associate Plant Pathologist, respectively.  相似文献   

9.
An electron microscope study was conducted on samples of pine bark taken from stacks during consecutive stages of composting. It was found using scanning electron microscopy (SEM) that bacteria, actinomycetes and fungi were present in relatively low numbers on the bark surface before composting was initiated. After addition of urea and water to bark heaps, microbial numbers rose, particularly the bacterial fraction. A large number of actinomycetes were seen below the surface of the bark as composting progressed. Transmission electron microscopy (TEM) of bark in the late stages of composting demonstrated the presence of a variety of microbes within the bark cells. The microorganisms were seen, using SEM, to be degrading the surface of the bark chips, and, using TEM, to be attached to the lignified cell walls. Physiological studies on bacteria isolated at different stages of composting showed they had a number of enzymes such as carboxymethyl cellulase that could aid in the degradation of pine bark. The isolates consisted of Gram-negative and Gram-positive strains, some of which were spore formers. Most of the isolates, including some Gram-negative non-sporing bacteria, were able to grow over a wide range of temperatures from 30 to 60°C, and, in some cases, 70°C.  相似文献   

10.
Evaluation of enzyme activities in combination with taxonomic analyses may help define the mechanisms involved in microbial decomposition of orgaic amendments and biological control of soilborne pathogens. In this study, powdered pine bark was added to nematode-infested soil at rates of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 g kg–1. Total fungal populations did not differ among treatments immediately after application of pine bark. After 7 days, fungal populations were positively correlated with increasing levels of pine bark. This increase was sustained through 14 and 21 days.Penicillium chrysogenum andPaecilomves variotii were the predominant fungal species isolated from soil amended with pine bark. Total bacterial populations did not change with addition of pine bark at 0, 7, and 14 days after treatment. At 21 and 63 days, total bacterial populations declined in soil receiving the highest rates of pine bark. Addition of pine bark powder to soil caused a shift in predominant bacterial genera fromBacillus spp. in nonamended soil, toPseudomonas spp. in amended soil. Soil enzyme activities were positively correlated with pine bark rate at all sampling times. Trehalase activity was positively correlated with total fungal populations and with predominant fungal species, but was not related to bacterial populations. The number of non-parasitic (non-stylet bearing) nematodes andMeloidogyne arenaria in soil and roots were not correlated with pine bark rate. However,Heterodera glycines juveniles in roots, and the number of cysts g–1 root, declined with increasing levels of pine bark.Journal Series Series No. 18-933598 Alabama Agricultural Experiment Station  相似文献   

11.
Alate swarms are one of the major visible signs of the expansion of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), in an area. Successful establishment of an incipient colony is thought to mainly rely on available food resources and moisture. The large-scale use of tree-based mulches in landscapes may inadvertently contribute to local establishment and growth of C. formosanus colonies. This research investigated the nutritional ecology of incipient colonies of C. formosanus feeding on seven tree-based, weathered, and nonweathered landscape mulches: pine straw, pine bark, cedar wood, water oak, eucalyptus, cypress, and melaleuca. Incipient colonies of C. formosanus feeding on pine straw, either weathered or nonweathered, produced significantly more progeny over the course of 1-yr feeding than colonies feeding on the other mulches tested. Regardless of weathered or not, the incipient colonies feeding on pine straw, eucalyptus, bald cypress, and water oak mulches had significantly greater survival rates after 360 d (53-77%) than colonies feeding on the other mulches tested (0-13%), but colonies feeding on nonweathered water oak had significantly lower survival (8%) than those kept on weathered water oak (58%). Colony fitness values were significantly different between the weathering treatment groups and among the different types of mulches. With regard to colony growth characteristics, three distinct growth patterns were identified: a high number of progeny (>100) with high colony survival rate (>50%), a medium number of progeny (12-50) with high colony survival rate (>50%), and a small number of progeny (0-10) with low colony survival rate (<5%). These findings suggest that different types of mulch substrates could significantly impact the nutritional ecology of the founding pairs and the successful establishment of incipient colonies during the swarming season.  相似文献   

12.
In a recent study, we reported a previously undescribed behavior in which a bark beetle exuded oral secretions containing bacteria that have antifungal properties, and hence defend their galleries against pervasive antagonistic Hyphomycete fungi. Actinobacteria, a group known for their antibiotic properties, were the most effective against fungi that invade the spruce beetle galleries. In the present study, we describe the isolation and identification of microorganisms from oral secretions of three bark beetles (Coleoptera: Curculionidae: Scolytinae): the spruce beetle, Dendroctonus rufipennis Kirby, the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini Say. Bacteria isolated from these three species span the major bacterial classes α-, β-, and γ-Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, except for D. ponderosae , which yielded no α-proteobacteria or Bacteroidetes isolates. Spruce beetles and pine engraver beetles had similar numbers of α-proteobacteria isolates, but pine engravers yielded twice as many Bacteroidetes isolates as spruce beetles. In contrast, mountain pine beetles yielded more isolates in the β- and γ-proteobacteria than spruce beetles and pine engravers. The highest percentage of Actinobacteria was obtained from spruce beetles, followed by pine engravers and mountain pine beetles. All of the fungal isolates obtained from the three beetle species were Ascomycetes. The greatest fungal diversity was obtained in spruce beetles, which had nine species, followed by pine engravers with five, and mountain pine beetles with one.  相似文献   

13.
Reuse of waste materials as growing media for ornamental plants   总被引:10,自引:0,他引:10  
The use of different waste materials: pine bark, coconut fibre and sewage sludge as substrates in the production of ornamental plants was studied, with an special interest on the suitability of coconut fibre as growing substrate for conifer plants. The plant species tested were Pinus pinea, Cupressus arizonica and C. sempervirens and the substrate mixtures were: (1) pine bark, (2) pine bark with 15% of sewage sludge compost, (3) pine bark with 30% of sewage sludge compost, (4) coconut fibre, (5) coconut fibre with 15% of sewage sludge compost and (6) coconut fibre with 30% of sewage sludge compost. Substrates were physically and chemically well characterized, and 75-cm plants were grown on them for one year. Plant and substrate status were periodically tested along the experiment. As biosolid recycling is the main objective of the present work, the mixtures with 30% of composted sewage sludge will be the most convenient substrate to use. For C. sempervirens and C. arizonica, a mixture between pine bark or coconut fibre and 30% of biosolid compost in volume gave the best results, but the lower cost of the pine bark than the coconut fibre substrate indicated the use of the PB+30% CSS. For P. pinea the research of new combinations between waste products is recommended to attain better results.  相似文献   

14.
姚娜  王涛  陈燕  曹晓璐 《微生物学报》2024,64(5):1654-1667
【目的】通过分析树兰原球茎内生细菌群落组成、多样性特征和促生功能,探究树兰种子萌发相关的核心细菌类群及生物学功能。【方法】以树兰原球茎(树兰种子在树皮基质上共生萌发、在树叶基质上共生萌发、在MS1培养基上非共生萌发)和共生萌发基质(松树皮、腐熟树叶)共5个样本为研究材料,采用高通量测序技术分析不同萌发条件下原球茎内生细菌的16S rRNA基因多样性,比较分析细菌群落多样性和物种组成特征,通过传统的内生细菌分离方法获得共生萌发原球茎内生细菌菌株,并进行促生潜力评价。【结果】从5个研究样本中共获得2 735个可操作分类单元(operational taxonomic unit, OTU),属于41门453科876属,其中变形菌门(Proteobacteria)和放线菌门(Actinobacteria)为优势门。主坐标分析(principal coordinates analysis, PCoA)结果表明,树兰原球茎与萌发基质细菌群落结构存在差异,非共生萌发原球茎与在树皮基质上共生萌发原球茎内生细菌群落结构最为接近。功能预测表明,在树叶基质上共生萌发的原球茎内生细菌固氮功能显著高于其他萌发条件。通过分离培养,共获得内生细菌19株,分属12属16种,其中鞭毛膨胀芽孢杆菌(Tumebacillus flagellatus)、Bradyrhizobium cenepequi和人参腐殖土魏茨曼氏菌(Weizmannia ginsengihumi)为共生萌发原球茎共有种;韩国假单胞菌(Pseudomonaskoreensis)和 W. ginsengihumi兼具有溶磷、产吲哚乙酸(indole-3-acetic acid, IAA)和铁载体的潜在能力。【结论】在不同环境中萌发的树兰原球茎均有丰富的内生细菌群落定殖;从共生萌发原球茎中分离的内生细菌具有固氮、溶磷、产IAA和铁载体等促生功能。本研究为兰科植物种子萌发相关微生物资源挖掘及兰科植物与微生物互作研究提供科学依据。  相似文献   

15.
With the focus on alternative microbes for soil-bioremediation, 18 species of litter-decomposing basidiomycetous fungi were screened for their ability to grow on different lignocellulosic substrates including straw, flax and pine bark as well as to produce ligninolytic enzymes, namely laccase and manganese peroxidase. Following characteristics have been chosen as criteria for the strain selection: (i) the ability to grow at least on one of the mentioned materials, (ii) production of either of the ligninolytic enzymes and (iii) the ability to invade non-sterile soil. As the result, eight species were selected for a bioremediation experiment with an artificially contaminated soil (total polycyclic aromatic hydrocarbon (PAH) concentration 250 mg/kg soil). Up to 70%, 86% and 84% of benzo(a)anthracene, benzo(a)pyrene, and dibenzo(a,h)anthracene, respectively, were removed in presence of fungi while the indigenous microorganisms converted merely up to 29%, 26% and 43% of these compounds in 30 days. Low molecular-mass PAHs studied were easily degraded by soil microbes and only anthracene degradation was enhanced by the fungi as well. The agaric basidiomycetes Stropharia rugosoannulata and Stropharia coronilla were the most efficient PAH degraders among the litter-decomposing species used.  相似文献   

16.
Aim  Native American fire use influenced bark thickness of coastal and island Monterey pine ( Pinus radiata D. Don) and bishop pine ( Pinus muricata D. Don) populations.
Methods  Basal bark thickness and d.b.h. were measured in two common-garden pine plantations that included all five native Monterey pine populations and nine of 10 native bishop pine populations. One-factor analysis of covariance was used to determine if significant differences in bark thickness existed between island and coastal populations.
Results  Bark thickness was measured on 228 Monterey and 42 bishop pines. Bark thickness in coastal and island Monterey pine populations was significantly different. Bark thickness in coastal and island bishop pine populations was not significantly different.
Main conclusions  Basal bark was thick in populations where there was a history of Native American burning. Basal bark was thin in two island populations where Native Americans have been absent or distant from the pine populations. While other influences no doubt affect the evolution of lower-bole bark thickness, it appears that frequent anthropogenic fires may be a powerful selection force.  相似文献   

17.
Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle–fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect’s geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle’s flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle–fungus interaction is discussed.  相似文献   

18.
The role of compost microflora in the suppression of salmonella regrowth in composted sewage sludge was investigated. Microbial inhibition studies of salmonella growth were conducted on nutrient agar, in composts that had been subjected to different temperatures in compost piles, and in radiation sterilized composts inoculated with selected fractions of the compost microflora. Agar assays of inhibition indicated that bacteria and actinomycetes were not suppressive to salmonellae, but a few fungi were. However, compost inoculation assays showed consistently that fungi were not suppressive, but bacteria and actinomycetes were. In compost inoculation assays, microbial antagonists, when present, either killed salmonellae or reduced their growth rate. No suppression of salmonellae occurred in compost taken from 70°C compost-pile zones despite the presence and growth of many types of microbes. With greater numbers and kinds of microbes in 55°C compost, salmonella growth was suppressed 100–10,000-fold. Salmonellae died when inoculated into compost from unheated zones (25–40°C) of piles. Prior colonization of compost with only noncoliform gram-negative bacteria suppressed salmonellae growth 3,000-fold. Coliforms when inoculated prior to salmonellae accounted for 75% of salmonella die-off. Mesophilic curing to allow colonization of curing piles in their entirety by gram-negative bacteria, especially coliforms, should be an effective way to prevent repopulation by salmonellae.  相似文献   

19.
High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process.  相似文献   

20.
In the low nutrient environment of conifer bark, subcortical beetles often carry symbiotic fungi that concentrate nutrients in host tissues. Although bark beetles are known to benefit from these symbioses, whether this is because they survive better in nutrient-rich phloem is unknown. After manipulating phloem nutrition by fertilizing lodgepole pine trees (Pinus contorta Douglas var. latifolia), we found bolts from fertilized trees to contain more living individuals, and especially more pupae and teneral adults than bolts from unfertilized trees at our southern site. At our northern site, we found that a larger proportion of mountain pine beetle (Dendroctonus ponderosae Hopkins) larvae built pupal chambers in bolts from fertilized trees than in bolts from unfertilized trees. The symbiotic fungi of the mountain pine beetle also responded to fertilization. Two mutualistic fungi of bark beetles, Grosmannia clavigera (Rob.-Jeffr. & R. W. Davidson) Zipfel, Z. W. de Beer, & M. J. Wingf. and Leptographium longiclavatum Lee, S., J. J. Kim, & C. Breuil, doubled the nitrogen concentrations near the point of infection in the phloem of fertilized trees. These fungi were less capable of concentrating nitrogen in unfertilized trees. Thus, the fungal symbionts of mountain pine beetle enhance phloem nutrition and likely mediate the beneficial effects of fertilization on the survival and development of mountain pine beetle larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号