首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
有许多DNA复制蛋白是装配成一定的结构发挥作用,如引物体和复制体。在复制叉处,由DNA pol Ⅲ全酶二体、引物体和解螺旋酶装配成复制体,负责先行链和后行链的同时合成。复制中,后行链模板绕DNA pol Ⅲ全酶形成折迴环,随着复制体在复制叉处前移,后行链以5′→3′的方向合成冈崎片段。  相似文献   

2.
探讨核糖体休眠因子yfiA、rmf和hpf对大肠杆菌DNA复制起始的影响。观察ΔyfiA、Δrmf和Δhpf基因缺失突变体的DNA复制式样、细胞倍增时间、细胞大小等表型变化,并使用温度敏感性实验和蛋白定量实验探究yfiA、rmf和hpf对DNA复制起始的作用机理。结果发现,相较于野生型细胞,ΔyfiA、Δrmf和Δhpf突变体出现DNA复制起始的延迟、细胞倍增时间延长、细胞体积减小等表型变化。温度敏感性试验表明YfiA、RMF和HPF蛋白不是直接通过与DnaA、DnaB或DnaC蛋白相互作用来影响DNA复制起始。蛋白定量实验表明它们可能是通过减少细胞内总蛋白的量,包括DnaA蛋白,使细菌的代谢和生长速度减慢,从而导致细菌DNA复制起始发生延迟、细胞倍增时间延长和体积减小等表型改变。这为深入研究yfiA、rmf和hpf的功能提供基础。  相似文献   

3.
4.
彭斌  王静  胡源  许兴智 《生命科学》2014,(11):1120-1135
DNA损伤应答(DNA damage response,DDR)是维持基因组稳定性的核心机制,对DDR的研究不仅有助于阐明癌症发生发展的机理,同时也为癌症治疗和抗癌新药开发提供生物学基础。蛋白质翻译后修饰,尤其是蛋白激酶介导的磷酸化修饰和蛋白磷酸酶介导的去磷酸化修饰,参与调控绝大多数的生命活动过程,包括DDR。对蛋白激酶ATM/ATR/CHK2/CHK1介导的DDR的研究已经比较透彻,但是对蛋白磷酸酶在DDR中的功能研究还有待加强和深入。比较全面地综述丝氨酸/苏氨酸蛋白磷酸酶在DDR中的功能并探讨在抗癌新药开发中的前景。  相似文献   

5.
近年来有关DNA复制的机制研究取得一些重要进展,但现有高等生物学相关专业的《生物化学》、《分子生物学》和《基因工程》等教材中DNA复制机理尤其是复制起始相关章节的内容更新不够。结合最新的研究进展,本文综述了四种DNA复制方式:双向复制(原核大肠杆菌和真核生物)、单起点单向(质粒ColE1)、哺乳动物线粒体DNA(取代环)以及最近发现的不需要引物的DNA聚合酶起始的DNA复制方式,丰富了教材相关的内容,强调复制的不同方式是不同的复制起始复合物装备的结果。文末对四种不同的复制方式异同进行了比较,根据复制原点在复制复合物装备中的重要作用,对教材中复制原点的概念进行了进一步的剖析。本文内容将有利于学生跳出课程的框架,将相关的知识点融会贯通,夯实理论基础并在将来能有所应用。  相似文献   

6.
复制起始调控是真核生物复制调控机制的重要环节,也是细胞生长调控的核心问题.对SV40病毒和酵母体系的研究为阐明真核生物的复制起始机制及其与细胞周期的关系提供了线索.目前,与DNA复制起始有关的多种蛋白质因子(如核蛋白P1,DNA单链结合蛋白,DNA聚合酶α,增殖细胞核抗原等)的作用机理逐渐明朗,周期依赖的调控特点得到了证实文章着重介绍了DNA复制起始在细胞周期中的两个调控点及各种周期蛋白在该点的作用,文中还涉及复制起始异常与肿瘤发生的关系.  相似文献   

7.
8.
DNA聚合酶在DNA合成过程中需要的引物包括RNA引物、DNA自我引物和蛋白质引物3种类型。新DNA链(如冈崎片段)的复制多是在DNA模板上合成一段RNA引物,细小病毒利用其基因组末端的反向末端重复序列(ITRs)自我折叠成DNA引物,而一些DNA、RNA病毒及真菌质粒起始复制反应的引物则是蛋白质。以感染原核生物的噬菌体Phi29和真核DNA病毒腺病毒为例,从复制过程所涉及的蛋白质、对复制原点的识别、复制起始反应、新链的延伸、复制终止过程等方面详细阐述DNA病毒由蛋白质引发的复制机制,并对已商品化的Phi29 DNA聚合酶产品多重置换扩增及单细胞测序等的应用以及基于噬菌体Phi29蛋白质起始的最小复制系统体外扩增异源DNA等最新的应用研究作相关总结介绍。  相似文献   

9.
用免疫检测技术分析了吸胀的番茄种子胚根尖细胞中的β-微管蛋白,并用流体细胞分析仪分析了其细胞核DNA的表现形式,发现种子在吸水8 ̄16h时,即可测得β-微管蛋白的标记,吸水48h标记密度达到高峰。  相似文献   

10.
大肠杆菌细胞DNA复制、修复和重组途径的衔接   总被引:2,自引:0,他引:2  
以大肠杆菌为例围绕相关领域的研究动态进行分析和总结.DNA复制、损伤修复和重组过程的相互作用关系研究是当今生命科学研究的前沿和热点之一.越来越多的研究表明,在分子水平上,DNA复制、损伤修复和重组过程既彼此独立,又相互依存.上述途径可以通过许多关键蛋白质之间的相互作用加以协调和整合,并籍此使遗传物质DNA得到有效的维护和忠实的传递.需要指出的是,基于许多细胞内关键蛋白及其功能在生物界中普遍保守性的事实,相信来自大肠杆菌有关DNA复制、修复和重组之间的研究成果也会对相关真核生物的研究提供借鉴.  相似文献   

11.
Mizuno  Takeshi 《DNA research》1997,4(2):161-168
Bacteria have devised sophisticated His-Asp phosphorelay signalingsystems for eliciting a variety of adaptive responses to theirenvironment, which are generally referred to as the "two-componentregulatory system." The widespread occurrence of the His-Aspphosphorelay signaling in both prokaryotes and eukaryotes impliesthat it is a powerful device for a wide variety of adaptiveresponses of cells to their environment. The two-component signaltransducers contain one or more of three common and characteristicphosphotransfer signaling domains, named the "transmitter, receiver,and histidine-containing phosphotransfer (HPt) domains." Therecently determined entire genomic sequence of Escherichia coliallowed us to compile systematically a complete list of genesencoding such two-component signal transduction proteins. Theresults of such an effort, made in this study, revealed thatat least 62 open reading frames(ORFs) were identified as putativemembers of the two-component signaltransducers in this singlespecies. Among them, 32 were identified as response regulatorand 23 were identified as orthodox sensory kinases. In addition,E. coli has five hybrid sensory kinases. The precise locationof each ORF was mapped on a physical map of the entire E. coligenome. All of these ORFs were then compiled and annotated extensively.  相似文献   

12.
The copper stimulon in Escherichia coli consists of four regulons, the CueR-, CusS/CusR-, CpxA/CpxR-, and YedV/YedW regulons. E. coli mutants defective in cpxRA showed higher sensitivity to copper than the wild type. A total of 15 promoters were found to be induced in E. coli culture upon exposure to copper in a CpxA/CpxR-dependent manner. After gel-shift and DNase I foot-printing analyses, a conserved tandem repeat of pentanucleotide sequence, GTAAA(N)4–8GTAAA, with a conserved A of 4-bp upstream of each pentamer, was identified to be the CpxR-binding site. The difference in the orientation and location of the CpxR box is discussed with respect to the regulation mechanism among CpxR-regulon genes.  相似文献   

13.
Summary Flow cytometry was used to study initiation of DNA replication in Escherichia coli K12 after induced expression of a plasmid-borne dnaA + gene. When the dnaA gene was induced from either the plac or the pL promoter initiation was stimulated, as evidenced by an increase in the number of origins and in DNA content per mass unit. During prolonged growth under inducing conditions the origin and DNA content per mass unit were stabilized at levels significantly higher than those found before induction or in similarly treated control cells. The largest increase was observed when using the stronger promoter pL compared to plac. Synchrony of initiation was reasonably well maintained with elevated DnaA protein concentrations, indicating that simultaneous initiation of all origins was still preferred under these conditions. A reduced rate of replication fork movement was found in the presence of rifampin when the DnaA protein was overproduced. We conclude that increased synthesis levels or increased concentrations of the DnaA protein stimulate initiation of DNA replication. The data suggest that the DnaA protein may be the limiting factor for initiation under normal physiological conditions.  相似文献   

14.
The beta subunit of Escherichia coli DNA polymerase III holoenzyme was fused to the green fluorescent protein GFP. The gene fusion under the control of the heterologous lac promoter was used to replace the wild-type allele in the chromosome. The formation of GFP-beta fluorescent foci in GFP-beta expressing cells required DNA replication and their number per cell was dependent on cell growth. Examination of GFP-beta foci in a synchronous round of replication suggested that DNA replication was accompanied by the recruitment of GFP-beta foci near the midcell, followed by the rapid migration of the foci in opposite directions to the 1/4 and 3/4 positions during DNA replication.  相似文献   

15.
Fossum S  Crooke E  Skarstad K 《The EMBO journal》2007,26(21):4514-4522
The replication period of Escherichia coli cells grown in rich medium lasts longer than one generation. Initiation thus occurs in the 'mother-' or 'grandmother generation'. Sister origins in such cells were found to be colocalized for an entire generation or more, whereas sister origins in slow-growing cells were colocalized for about 0.1-0.2 generations. The role of origin inactivation (sequestration) by the SeqA protein in origin colocalization was studied by comparing sequestration-deficient mutants with wild-type cells. Cells with mutant, non-sequesterable origins showed wild-type colocalization of sister origins. In contrast, cells unable to sequester new origins due to loss of SeqA, showed aberrant localization of origins indicating a lack of organization of new origins. In these cells, aberrant replisome organization was also found. These results suggest that correct organization of sister origins and sister replisomes is dependent on the binding of SeqA protein to newly formed DNA at the replication forks, but independent of origin sequestration. In agreement, in vitro experiments indicate that SeqA is capable of pairing newly replicated DNA molecules.  相似文献   

16.
Summary Irradiation of Escherichia coli with UV light causes a transient inhibition of DNA replication. This effect is generally thought to be accounted for by blockage of the elongation of DNA replication by UV-induced lesions in the DNA (a cis effect). However, by introducing an unirradiated E. coli origin (oriC)-dependent replicon into UV-irradiated cells, we have been able to show that the environment of a UV-irradiated cell inhibits initiation of replication from oriC on a dimer-free replicon. We therefore conclude that UV-irradiation of E. coli leads to a trans-acting inhibition of initiation of replication. The inhibition is transient and does not appear to be an SOS function.  相似文献   

17.
18.
Summary Temperature-sensitive mutants that filamented at the non-permissive temperature were isolated by specific mutagenesis of the terminus region of the Escherichia coli chromosome. Two of them, mapping at about 35 min, failed to divide due to inhibition of DNA replication. Further characterization indicated that these mutants are temperature-sensitive for DNA chain elongation.  相似文献   

19.
Cells employ specific and nonspecific mechanisms to protect their genome integrity against exogenous and endogenous factors. The clbS gene is part of the polyketide synthase machinery (pks genomic island) encoding colibactin, a genotoxin implicated in promoting colorectal cancer. The pks is found among the Enterobacteriaceae, in particular Escherichia coli strains of the B2 phylogenetic group. Several resistance mechanisms protect toxin producers against toxicity of their products. ClbS, a cyclopropane hydrolase, was shown to confer colibactin resistance by opening its electrophilic cyclopropane ring. Here we report that ClbS sustained viability and enabled growth also of E. coli expressing another genotoxin, the Usp nuclease. The recA::gfp reporter system showed that ClbS protects against Usp induced DNA damage. To elucidate the mechanism of ClbS mediated protection, we studied the DNA binding ability of the ClbS protein. We show that ClbS directly interacts with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), whereas ssDNA seems to be the preferred substrate. Thus, the ClbS DNA-binding characteristics may serve bacteria to protect their genomes against DNA degradation.  相似文献   

20.
Wang Z  Xiang L  Shao J  Wegrzyn G 《Plasmid》2007,57(3):265-274
ColE1 plasmid copy number was analyzed in relaxed (relA) and stringent (relA(+)) Escherichia coli cells after supplementation of culture media with adenosine monophosphate (AMP). When a relaxed E. coli strain bearing ColE1 plasmid was cultured in LB medium for 18 h and induced with AMP for 4h, the plasmid DNA yield was significantly increased, from 2.6 to 16.4 mgl(-1). However no AMP-induced amplification of ColE1 plasmid DNA was observed in the stringent host. Some plasmid amplification was observed in relA mutant cultures in the presence of adenosine, while adenine, ADP, ATP, ribose, potassium pyrophosphate and sodium phosphate caused a minor, if any, increase in ColE1 copy number. A mechanism for amplification of ColE1 plasmid DNA with AMP in relA mutant bacteria is suggested, in which AMP interferes with the aminoacylation of tRNAs, increases the abundance of uncharged tRNAs, and uncharged tRNAs promote plasmid DNA replication. According to this proposal, in relA(+) cells, the AMP induction could not increase ColE1 plasmid copy number because of lower abundance of uncharged tRNAs. Our results suggest that the induction with AMP can be used as an effective method of amplification of ColE1 plasmid DNA in relaxed strains of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号