首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific rearrangements of the brain bioelectric potential field and the structures where the components (waves) of the main EEG rhythms interact, as well as the stereotactic location and power of the equivalent electrical dipole sources (EEDSs), were studied at various stages of acute experimental hypoxia (breathing for 15–30 min a hypoxic gas mixture containing 8% oxygen in nitrogen). The disrupted intercentral relationships that ensure the formation of the dynamic “morphological equivalent” to support the integrative brain activity, rearrangements of this activity, and the adaptive functions of the whole brain proved to account for partial or complete disintegration of systemic brain activity during acute hypoxia. EEDS tomography showed that EEDSs responsible for the generation of the basic brain rhythmic pattern are normally located in the thalamic structures. At the initial stages of hypoxia, the distribution of the EEDS foci is changed so that the density of EEDSs is increased on the sections that include the hypothalamic region structures, basal nuclei of the forebrain, and the limbic system; the basal, frontal, and medial regions of the temporal lobes of both hemispheres are also involved. With increasing hypoxia, EEDSs appeared in the basal and medial regions of the frontal lobes. At this time, both the surface and deep regions of the frontal lobes of the brain hemispheres are the major targets of the hypoxic effect. At the stages of severe hypoxia, pronounced functional changes in the CNS are observed, including the phenomenon of movement of multiple EEDS foci primarily through the basal and mediobasal regions of the frontal and temporal lobes and in the limbic system structures. Thus, despite the generalized high-amplitude paroxysmal activity that is observed in EEG, a functional disintegration (disruption) of interactions between individual brain regions appears and leads to disturbed regulation of the brain and systemic brain activity. Spatiotemporal EEG markers have been identified that make it possible to assess the individual sensitivity and resistance to hypoxia, as well as the degree of disintegration of his systemic brain activity at different stages of hypoxia.  相似文献   

2.
The possibilities of biofeedback training for improvement of the self-control of the functional state (relaxation) were studied in 9- to 10–year-old children. At the first stage, under conditions of electrophysiological experiment, relaxation shifts were assessed in the cycle quiet wakefulness–relaxation–recovery of the initial state by autonomic (skin resistance) and EEG (spectra and coherence) indices. The children were then trained to control their functional state with a computer game including a feedback loop by skin temperature. After the training cycle, children were repeatedly examined in electrophysiological experiment with the instruction to control their state. Comparative analysis of self-induced relaxation changes before and after a successful training course revealed greater shifts of skin resistance and an increase in the number of distant functional connections (especially, in the intermediate and high-frequency EEG subbands), with a significantly increased coherence level during relaxation. A correlation was found between the efficiency of self-regulation training and some individual psychophysiological characteristics (simple motor reaction time, autonomic coefficient, resting EEG). Low efficiency of self-control training was observed in younger schoolchildren with a sharply deviant (from the mean group values) reaction time and autonomic coefficient, as well as with EEG manifestations of functional immaturity of the upper brain regulatory structures. The dependence of the EEG changes on the self-regulation strategy is discussed on the basis of obtained evidence and data in the literature.  相似文献   

3.
Specific changes of bioelectrical brain activity was found in 27 patients with different level of posttraumatic consciousness depression by the methods of crosscorrelation, coherence and factor analysis of EEG. The changes of activity of morphofunctional systems of intracerebral integrations were revealed partially by decreasing of unspecific activity from brainstem structures reflected with increasing of slow wave activity and decreasing of EEG coherence in alpha- and beta-range. Depression of system organization of interconnections of bioelectrical brain activity in frontal and occipital regions of both hemispheres was also detected, and testified about decreasing of intercortical and thalamocortical brain system action under brain dislocation. The changes of integrative brain system activity, provides interhemispheric interaction, had the specific characted. Our results propose a "facilitation" of activity of system, providing "direct" interhemispheric connections through corpus callosum and other commissural tracts of telencephalon as a sequel of mesodiencephalon structures depression with steady reciprocal, antiphase relations of slow weve activity in symmetrical areas of hemispheres in coma II patients. The data of our research had shown no complete disintegration of system brain activity in coma II patients in spite of consciousness and brainstem reflexes depression.  相似文献   

4.
The amplitude-frequency and spatiotemporal characteristics of the EEGs of subjects performing various cognitive-mnemenic activities under the conditions of graduated hypoxia were studied. The quickness and correctness of test performance were significantly decreased beginning from the sixth minute of hypoxia as compared to normoxic conditions. The amplitude and mean period of the dominant EEG activity in this functional state were higher than in the same tests performed under normoxic conditions and lower than in the case of hypoxia not accompanied by the performance of tests. The spatiotemporal characteristics of the EEG under hypoxic conditions displayed both the characteristics typical of hypoxia (a decrease in EEG cross-correlation within anterior cortical regions) and those typical of cognitive-mnemenic activity (an increase in the correlation between the EEGs of distant zones of anterior and posterior cortical regions). It is assumed that the “intermediate” EEG pattern observed in subjects performing cognitive-mnemenic tests under hypoxic conditions reflects opposite effects of hypoxia and intellectual effort on the functional activity of brain neurons.  相似文献   

5.
This article generalizes the results of many years’ studies of the EEG of patients with tumorous lesions in the diencephalic, brainstem, and limbic structures, which fulfill the regulatory function in ensuring integral brain activity. The specific features of the inclusion of individual structures under investigation in the organization of the intra- and interhemispheric relations of cortical biopotentials were demonstrated against the background of diffuse changes in the biopotentials that reflect the systemic character of neurodynamic reorganizations when the regulatory brain structures are involved in the pathological process. This study expands the idea of the predominant functional connection of the diencephalic structures with the right hemisphere and brainstem structures with the left one with determination of the regional specific features of changes in the intrahemispheric EEG coherences. The distinguishing features of intercentral relations when the limbic structures are involved in the pathological process show similarity with the neurodynamic reorganizations in patients with lesions in both diencephalic and (even more so) brainstem structures. Universal elements were detected in the formation of integral adaptive reactions of the brain with lesions in its regulatory structures, which reflects their close functional interaction and makes it possible to consider them the individual links of an integral regulatory system. The study revealed reciprocal changes in various forms of electrical activity, which reflects reciprocation of interaction of individual regulatory structures. This is one of the EEG equivalents of the formation of adaptive-compensatory cerebral reactions. The specificity of influence of the studied regulatory structures are clearly seen in situations of their morphofunctional isolation observed during cerebral coma. In these conditions, when the cortex is functionally inactive, the authors demonstrated the dynamic character of changes in interhemispheric asymmetry, which reflects the dominance of individual links of the regulatory system playing the role of supreme regulator of life support of the body in critical states.  相似文献   

6.
In the paper the results are presented of studying of the electrical brain activity of a specific contingent of subjects which by subjective evaluations considered themselves a category of sensitives (extrasenses). The EEG of these subjects was studied in various functional states--a state of relative rest (background) during diagnostics, of directed influence on the percipient and during meditation. Specificity of spatial-temporal organization of the brain electrical processes of operators--sensitives was revealed, the structure of which correlated with the state of mind. The character of changes in the EEG of these subjects in the background and especially during autogenous activity allows to suggest the formation of a spontaneous focus of stimulation in regulatory brain systems with a leading role of the frontal cerebral regions in these processes as one of the ways of organization of cerebral functions for the regulation of the extrasensory activity.  相似文献   

7.
The study aimed at optimizing the functional state (FS) of anxious six- to eight-year-old children showed that integrated use of physical exercises of a mainly aerobic character, relaxation training, respiratory exercises, and functional music is more effective in the long-term aspect than selective use of these means. Only physical exercises exert a marked influence in the FS of six- to eight-year-old anxious children under a stressful informational load. The use of other means of optimizing the FS appears to be less effective. The high effectiveness of physical exercises is determined by adaptive changes in the mechanisms of FS regulation in anxious children. Apparently, long-term adaptation to an adequate muscular activity ensures improved functioning of, and a better interaction between, the activating and inactivating structures of the modulating brain system located at different levels of the CNS, in particular, in the frontal cortical areas. It is emphasized that the peculiarities of the influence of different means of regulation of the FS on the body of anxious elementary school children are, largely determined by the immaturity of the frontothalamic regulatory system and the specifics of the functional organization of the limbic brain structures.  相似文献   

8.
The authors summarized the EEG findings and defined the nature of intercentral EEG relationships in different functional states of healthy subjects and patients with organic cerebral pathology based on coherence analysis. The EEG features typical of healthy subjects were identified: an anterior-posterior gradient of the mean coherence and the character of cortical-subcortical relationships in the anterior cerebral structures. Right- and lefthanded subjects showed the frequency and regional differences in EEG coherence, which reflected, mainly, specific intracortical relationships. Development and regression of pathologic signs in right- and lefthanded patients with organic brain lesions are thought to be determined by these differences. As distinct from cortical pathology, lesions of regulatory structures (diencephalic, brainstem, and limbic) were shown to produce more diffuse changes in intercentral relationships with a tendency to reciprocity. Intercentral relations, including their interhemispheric differences, varied with changes in the functional state of healthy subjects (increase and decrease in the level of functioning). A certain time course of changes in intercentral relationships was also revealed in patients with organic brain lesions during recovery of their consciousness and mental activity. Changes in the dominance of activity of individual regulatory structures are considered to be one of the most important factors that determine the dynamic character of EEG coherence.  相似文献   

9.
To gain a deeper insight into the relationship between the electrogenesis and oxygenation of the brain, fMRI and EEG reactions to identical functional loads (opening of the eyes and right- and left-hand fingering) were compared in 11 young right-handed healthy subjects with statistical techniques. Changes in power, frequency and coherent EEG parameters obtained by 18-channel monopolar recording were compared with values of + BOLD-fMRI response, calculated for 18 corresponding cortical areas on the basis of application of the "virtual cap" by the original algorithm. In reactive changes of both hemodynamic and bioelectrical parameters, sets of independent factors were identified, which were regarded on the basis of their topography as specific (localized in the cortical representation ofa relevant analyzer) and nonspecific (diffuse and similar under different functional loads). Specific component dominated in the fMRI response, whereas non-specific component was characteristic of the EEG reaction. The similar topography of reactive fMRI and EEG factors under normal conditions, confirmed by the correlation analysis, reflects the multilevel character of the systemic organization of the brain activity, visualized, in particular, in the sagittal projections of the individual fMRI images. Each of the reactive EEG factors included all of the EEG quantitative characteristics. EEG coherence, which dominated among other parameters (with a local increase in the cortical representation of a relevant analyzer and a diffuse decrease in the areas of the influence of the regulatory structures) displayed the highest correlation with hemodynamic responses of the brain.  相似文献   

10.

Introduction

Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG.

Material/Methods

Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources.

Results/Conclusion

Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies.  相似文献   

11.
The similarity of frequency parameters of electroencephalograms (EEG) recorded from visual, associative and sensorimotor cortical area, caudate nucleus and several thalamic nuclei have been analysed using the period analysis of EEG and cluster analysis of data obtained to clarify the functional interrelationships between these parts of the brain during generation of rhythmic activity of different types. Functional interrelationships between brain structures in freely moving cats during the states of drowsiness and slow-wave sleep have been shown to differ from "classical" thalamo-cortical pacemaker relations.  相似文献   

12.
Electroencephalographic imaging of higher brain function.   总被引:3,自引:0,他引:3  
High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.  相似文献   

13.
Multiparametric comparative analysis of spatial organization of EEG was carried out in 137 alcoholics and 131 heroin addicts. Common and different deviations from normal EEG (105 control subjects) were found. Global alterations of EEG spatial organization were observed in drug addicts (as compared to alcoholics). Such changes characterized increasing synchronizing effects of mesolimbic and brainstem structures on the brain cortex. The ethanol effects were more specific and asymmetric. Changes in EEG spectral-coherence characteristics were revealed in all frequency band, however, maximal changes took place in the high-frequency theta in drug addicts and in narrow-frequency alpha subranges in alcoholics. Different effects on the high-frequency EEG component (19.00-21.25 Hz) and information-energy index (coherence-to-spectral power ratio) suggest the difference influence of ethanol and heroin on emotional-motivational and cognitive processes as well as the level of consciousness. The obtained data on EEG discrimination of alcoholism and drug addiction (the inverse problem solution) on the basis of "specific" EEG patterns appear to have considerable promise in development of systems of occupational selection.  相似文献   

14.
This study is a follow-up to our previous research of the phenomenology and mechanisms of motion sickness (MS) and its relationship with changes in the sleep–wake cycle (SWC). We report data on the effect of MS on the SWC in 30-day-old intact rats and those exposed to prenatal hypoxia on days 13 and 19 of gestation. In all animal groups, MS was shown to decrease significantly the waking time and increase that of paradoxical sleep (PS). A link between hypothalamic MS and SWC regulatory mechanisms was revealed, and the role of this teamwork in the development of the sopite syndrome, which may be a sole manifestation of MS in some animals and man, was suggested. It was established that hypoxic exposure on day 19 of gestation had a greater damaging effect on the thalamocortical sleep-regulating structures than that on day 13, when it is only the hypothalamic-hippocampal slow-sleep regulatory systems that were found to be affected. Against this background, MS appreciably suppresses the brain excitatory systems that maintain wakefulness (supposed to be the ascending reticular activating system) and enhances those activating systems that regulate PS. It is exactly prenatal hypoxic exposure of rats on day 19 of gestation that enabled demonstrating the role of the evolutionarily young thalamocortical system in PS control.  相似文献   

15.
The immature brain is more resistant to hypoxia/ischemia than the mature brain. Although chronic hypoxia can induce adaptive-changes on the developing brain, the mechanisms underlying such adaptive changes are poorly understood. To further elucidate some of the adaptive changes during postnatal hypoxia, we determined the activities of four enzymes of glucose oxidative metabolism in eight brain regions of hypoxic and normoxic rats. Litters of Sprague-Dawley rats were put into the hypoxic chamber (oxygen level maintained at 9.5%) with their dams starting on day 3 postnatal (P3). Age-matched normoxic rats were use as control animals. In P10 hypoxic rats, lactate dehydrogenase (LDH) activity in cerebral cortex, striatum, olfactory bulb, hippocampus, hypothalamus, pons and medulla, and cerebellum was significantly increased (by 100%–370%) compared to those in P10 normoxic rats. In P10 hypoxic rats, hexokinase (HK) activity in hypothalamus, hippocampus, olfactory bulb, midbrain, and cerebral cortex was significantly decreased (by 15%–30%). Neither -ketoglutarate dehydrogenase complex (KGDHC, which is believed to have an important role in the regulation of the tricarboxylic acid [TCA] cycle flux) nor citrate synthase (CS) activity was significantly decreased in the eight regions of P10 hypoxic rats compared to those in P10 normoxic rats. In P30 hypoxic rats, LDH activity was only increased in striatum (by 19%), whereas HK activity was only significantly decreased (by 30%) in this region. However, KGDHC activity was significantly decreased in olfactory bulb, hippocampus, hypothalamus, cerebral cortex, and cerebellum (by 20%–40%) in P30 hypoxic rats compared to those in P30 normoxic rats. Similarly, CS activity was decreased, but only in olfactory bulb, hypothalamus, and midbrain (by 9%–21%) in P30 hypoxic rats. Our results suggest that at least some of the mechanisms underlying the hypoxia-induced changes in activities of glycolytic enzymes implicate the upregulation of HIF-1. Moreover, our observation that chronic postnatal hypoxia induces differential effects on brain glycolytic and TCA cycle enzymes may have pathophysiological implications (e.g., decreased in energy metabolism) in childhood diseases (e.g., sudden infant death syndrome) in which hypoxia plays a role.  相似文献   

16.
Ovarian hormones play an important role in the regulation of absence seizures in patients as well as in animal models. The present study examined whether chronic progesterone exposure would induce tolerance for the occurrence of absence seizures and whether reduction in gonadal steroids (via ovariectomy) would alter the number of basal and stress induced absence seizures in WAG/Rij rats, a genetic model for absence epilepsy.

Methods

In Experiment 1, female WAG/Rij rats equipped with EEG electrodes received progesterone (P) (20 mg/kg) or cyclodextrin (CD, solvent) i.p. injections once a day for 3 days while a third group received CD injections on Days 1 and 2 and P on Day 3. The EEG was recorded on the day preceding the injections and at each day after injections. In Experiment 2, female WAG/Rij rats equipped with EEG electrodes, were ovariectomized (OVX) or sham operated. EEG recordings were made before and at the 4th, 8th, 10th, 20th, and 35th day after surgery. Rats were then exposed to three series of 10 foot-shocks (FS, 1.5 mA, 1 s) over 3 days. The EEG was recorded 1 h before and 2 h after each FS series.

Results

Tolerance developed after a single P injection and the effect of P on SWDs was facilitated by two preceding control injections. No differences were found between OVX and sham-operated females in the occurrence of SWDs either in resting conditions or after acute FS exposure. However, OVX females showed a more prominent day-to-day aggravation in SWDs after repeated FS administration.

Conclusions

The data suggest an important interaction between hormones of the hypothalamo-pituitary-adrenal and hypothalamo-pituitary-gonadal axes in seizure control. On the one hand, stress interferes with and facilitates the acute effects of progesterone on the occurrence of SWDs and, on the other hand, rats with an intact hypothalamo-pituitary-gonadal axis can better regulate the stress response and develop tolerance to the stressor.  相似文献   


17.
The data concerning neurophysiological and neurotransmitter mechanisms of two principal kinds of inhibition of behavior is carried out: the inborn genetically determined inhibition and that developed in the course of training. On the basis of the experiments performed by the author and the literature on general neurophysiology the conclusion is made that development of inhibition of behavior during training (i.e. internal inhibition, including "latent inhibition") is determined by the relative strengthening of inhibitory hyperpolarization processes either locally (in a conditioned stimulus analyzer) or globally in the brain cortex and other brain structures during intensification of the inhibitory state (profound inhibition of a reflex and sleep). The main neurotransmitter in development of internal inhibition is gamma-aminobutyric acid. Inhibition of behavior without preliminary training arises either during the action of superstrong stimuli, (exceeding the maximum value inhibition) or during interaction of two and more active systems. A stronger one of these two systems suppresses another one (external inhibition, dominant inhibition, "freezing", "prepulse inhibition", etc.). These kinds of inhibition develop on the background of EEG activation, which suggests participation in their realization of reticular structures and corresponding neurotransmitters (acetylcholine, noradrenalin, dopamine and serotonin). Behavior pathology causes a break of the balanced interaction between the excitation and inhibition in the central nervous system. This affects both genetically determined forms of behavior inhibition and the learned internal inhibition.  相似文献   

18.
An attempt was made to reveal the mechanisms of adaptation of the human brain to fractional hypoxic load. With this in mind, the dynamics of spontaneous EEG was studied in a 10% hypoxic test performed before and after a course of normobaric hypoxic training. It was shown that under acute hypoxic conditions, the electrical activity of the brain is switched from the -range frequencies to the generation of medium-amplitude slow-wave oscillations predominantly of the range. This condition of electrogenesis is of a stable character and does not change upon external photostimulation. The training course of hypoxic therapy increases the EEG changes that are revealed. The switch to the generation of slow-wave medium-amplitude oscillations is likely to reflect the adaptation changes.  相似文献   

19.
Recent studies using electroencephalography (EEG) suggest that alteration of coherent activity between the anterior and posterior brain regions might be used as a neurophysiologic correlate of anesthetic-induced unconsciousness. One way to assess causal relationships between brain regions is given by renormalized partial directed coherence (rPDC). Importantly, directional connectivity is evaluated in the frequency domain by taking into account the whole multichannel EEG, as opposed to time domain or two channel approaches. rPDC was applied here in order to investigate propofol induced changes in causal connectivity between four states of consciousness: awake (AWA), deep sedation (SED), loss (LOC) and return of consciousness (ROC) by gathering full 10/20 system human EEG data in ten healthy male subjects. The target-controlled drug infusion was started at low rate with subsequent gradual stepwise increases at 10 min intervals in order to carefully approach LOC (defined as loss of motor responsiveness to a verbal stimulus). The direction of the causal EEG-network connections clearly changed from AWA to SED and LOC. Propofol induced a decrease (p = 0.002–0.004) in occipital-to-frontal rPDC of 8-16 Hz EEG activity and an increase (p = 0.001–0.040) in frontal-to-occipital rPDC of 10–20 Hz activity on both sides of the brain during SED and LOC. In addition, frontal-to-parietal rPDC within 1–12 Hz increased in the left hemisphere at LOC compared to AWA (p = 0.003). However, no significant changes were detected between the SED and the LOC states. The observed decrease in back-to-front EEG connectivity appears compatible with impaired information flow from the posterior sensory and association cortices to the executive prefrontal areas, possibly related to decreased ability to perceive the surrounding world during sedation. The observed increase in the opposite (front-to-back) connectivity suggests a propofol concentration dependent association and is not directly related to the level of consciousness per se.  相似文献   

20.
A review of experimental and theoretical works upon perception of emotions in speech is introduced. The main approaches to experimental study and different types of stimulation are considered. Clinical research and experiments upon healthy subjects investigate the brain organization of emotional speech recognition. In the works by Rusalova, Kislova integral psychophysiological preconditions for the successfulness of the recognition of speech emotional expression were studied. As a result of the investigation, extreme groups of persons were identified: with high indices of "emotional hearing" and with low level of recognition of emotions. Analysis of EEG included comparison of different EEG parameters between two groups: values of EEG power, the dominating frequencies, percentage of different EEG-bands in the summary EEG power, coherence, values of EEG inter- and intra-hemispheric asymmetry, etc. The subjects with low identification rates showed a higher brain activation and reactivity both during the emotion identification task and at rest as compared to the subjects with high identification rates. The data obtained reveal specific activation within the left frontal regions, as well as the right posterior temporal cortex during nonverbal recognition of emotions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号