首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various methods for separating eleven different types of topoisomerase II (TOPO-2) inhibitors, including epipodophyllotoxins, anthracyclines, anthracenediones, anthrapyrazoles, anthracenebishydrazones, indole derivatives, aminoacridines, benzisoquinolinediones, isoflavones, bisdioxopiperazines and thiobarbituric acids, are summarized. Proper sample preparation and storage is critical to the successful analysis of some TOPO-2 inhibitors due to difficulties associated with adsorption, instability and complex biological components. Solid-phase and liquid–liquid extractions are widely used to separate TOPO-2 inhibitors from biological samples, although simple deproteinization followed by direct analysis of the supernatant is preferable to extraction based on its speed and simplicity. High-performance liquid chromatography (HPLC) is the favored method for the bioanalysis of TOPO-2 inhibitors. UV or diode array detection is generally employed for early pharmacokinetic studies, while fluorescence or electrochemical detection is used more frequently for analytes with fluorescent or oxidative–reductive properties. For analyses requiring highly sensitive and/or specific detection, electrospray mass spectrometry (ESI-MS or ESI-MS–MS) provides a suitable alternative. A comprehensive compilation of the HPLC techniques currently used to separate TOPO-2 inhibitors will aid the future development of analytical methods for new TOPO-2 inhibitors.  相似文献   

2.
Topoisomerase II plays an essential role in the segregation of chromosomes during cell division. It is also a major component of the nuclear matrix. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between the catalytic domain of the yeast protein kinase 1 enzyme (Pkc1) and the N-terminal domain of the S. cerevisiae topoisomerase II. The S. cerevisiae Pkc1 is the homologue of the mammalian calcium dependent PKC.  相似文献   

3.
Human topoisomerase II plays a crucial role in DNA replication and repair. It exists in two isoforms: topoisomerase II alpha (alpha) and topoisomerase II beta (beta). The alpha isoform is localized predominantly in the nucleus, while the beta isoform exhibits a reticular pattern of distribution both in the cytosol and in the nucleus. We show that both isoforms of topoisomerase II are phosphorylated in HIV infected cells and also by purified viral lysate. An analysis of the phosphorylation of topoisomerase II isoforms showed that extracts of HIV infected cells at 8 and 32 h. post-infection (p.i.) contain maximal phosphorylated topoisomerase II alpha, whereas infected cell extracts at 4 and 64 h p.i. contain maximum levels of phosphorylated topoisomerase II beta. In concurrent to phosphorylated topoisomerase II isoforms, we have also observed increased topoisomerase II alpha kinase activity after 8h p.i and topoisomerase beta kinase activity at 4 and 64 h p.i. These findings suggest that both topoisomerase II alpha and beta kinase activities play an important role in early as well as late stages of HIV-1 replication. Further analysis of purified virus showed that HIV-1 virion contained topoisomerase II isoform-specific kinase activities, which were partially isolated. One of the kinase activities of higher hydrophobicity can phosphorylate both topoisomerase II alpha and beta, while lower hydrophobic kinase could predominantly phosphorylate topoisomerase II alpha. The phosphorylation status was correlated with catalytic activity of the enzyme. Western blot analysis using phosphoamino-specific antibodies shows that both the kinase activities catalyze the phosphorylation at serine residues of topoisomerase II alpha and beta. The catalytic inhibitions by serine kinase inhibitors further suggest that the alpha and beta kinase activities associated with virus are distinctly different.  相似文献   

4.
Cadmium (Cd2+) is a highly toxic and carcinogenic metal that is an environmental and occupational hazard. DNA topoisomerase II is an essential nuclear enzyme and its inhibition can result in the formation of genotoxic and recombinogenic DNA double strand breaks. In this study we showed that cadmium chloride strongly inhibited the DNA decatenation activity of human topoisomerase IIα in the low micromolar concentration range and that its inhibitory effects were reduced by glutathione. Because the activity of topoisomerase II is strongly inhibited by thiol-reactive compounds this result suggested that cadmium may be binding to critical topoisomerase II cysteine thiols. Cadmium, however, did not stabilize DNA-topoisomerase II covalent complexes, as measured by the lack of formation of DNA double strand breaks. Hence, it is not likely to be a topoisomerase II poison. Consistent with the idea that cadmium cytotoxicity may be modulated by glutathione levels, buthionine sulfoximine pretreatment to decrease glutathione levels resulted in a greatly increased cadmium-induced cytotoxicity in K562 cells. The results of this study suggest that cadmium may exert some of its cell growth inhibitory, and possibly its toxicity and carcinogenicity, by inhibiting topoisomerase IIα through reaction with critical cysteine thiols.  相似文献   

5.
6-Deoxyclitoriacetal (1) and a series of 11 further derivatives of it (2-12) were synthesized and evaluated for their cytotoxic and topoisomerase IIα inhibitory activities. Compounds bearing epoxide (2), morpholine (6) and benzylamine (10) moieties showed promising in vitro cytotoxic activities against four cancer cell lines, with IC50 values ranging from 0.38 to 0.73 μM. These three compounds also strongly inhibited topoisomerase II activity at 68.3-93.5% and showed a moderately high DNA intercalating property.  相似文献   

6.
Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors   总被引:2,自引:0,他引:2  
Our previously synthesized 37 compounds, which are 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole, and oxazolo(4,5-b)pyridine derivatives, were tested for their eukaryotic DNA topoisomerase II inhibitory activity in cell free system and 28 were found to inhibit the topoisomerase II at an initial concentration of 100 microg/ml. After further testing at a lower range of concentrations, 12 derivatives, which were considered as positive topoisomerase inhibitors, exhibited IC50 values between 11.4 and 46.8 microM. Etoposide was used as the standard reference drug to compare the inhibitor activity. Among these compounds, 2-phenoxymethylbenzothiazole (3f), 6-nitro-2-(2-methoxyphenyl)benzoxazole (1a), 5-methylcarboxylate-2-phenylthiomethylbenzimidazole (3c), and 6-methyl-2-(2-nitrophenyl)benzoxazole (1c) were found to be more active than the reference drug etoposide. Present results point out that, besides the very well-known bi- and ter-benzimidazoles, compounds with single bicycle fused ring systems in their structure such as benzimidazole, benzoxazole, benzothiazole, and/or oxazolopyridine derivatives also exhibit significant topoisomerase II inhibitory activity.  相似文献   

7.
A novel series of amide derivatives of lomefloxacin were synthesized and evaluated for their topoisomerase I and II inhibitory activity as well as cytotoxicity against a panel of five human cancer cell lines. Of the compounds prepared compounds 9d and 9g exhibited strong inhibition against topoisomerase II at 100 μM. In addition, docking studies were performed to predict the inhibition mode.  相似文献   

8.
Human Topoisomerase II is present in two isoforms, 170KDa alpha and 180KDa beta. Both the isoforms play a crucial role in maintenance of topological changes during DNA replication and recombination. It has been shown that Topoisomerase II activity is required for HIV-1 replication and the enzyme is phosphorylated during early time points of HIV-1 replication. In the present study, we have studied the molecular action of Topoisomerase II inhibitors, azalactone ferrocene (AzaFecp), Thiomorpholide amido methyl ferrocene (ThioFecp), and Ruthenium benzene amino pyridine (Ru(ben)Apy) on cell proliferation and also on various events of HIV-1 replication cycle. The Topoisomerase II beta over-expressing neuroblastoma cell line shows a higher sensitivity to these compounds compared to the Sup-T1 cell line. All the three Topoisomerase II inhibitors show significant anti-HIV activity at nanomolar concentrations against an Indian isolate of HIV-1(93IN101) in Sup-T1 cell line. An analysis of action of these compounds on proviral DNA synthesis at 5h of post-infection shows that they inhibit proviral DNA synthesis as well as the formation of pre-integration complexes completely. Further analysis, using polymerase chain reaction and western blot, showed that both the Topoisomerase II alpha and beta isoforms are present in the pre-integration complexes, suggesting their significant role in HIV-1 replication.  相似文献   

9.
In this study, a series of carbazole-rhodanine conjugates was synthesized and evaluated for their Topoisomerase II inhibition potency as well as cytotoxicity against a panel of four human cancer cell lines. Among these thirteen compounds, 3a, 3b, 3g, and 3h possessed Topoisomerase II inhibition potency at 20?μM. Mechanism study revealed that these compounds may function as Topo II catalytic inhibitors. It was found that the electron-withdrawing groups on the phenyl ring of compounds played an important role on enhancing both enzyme inhibition and cytotoxicity.  相似文献   

10.
Many antitumor drugs act as topoisomerase inhibitors, and the inhibitions are usually related to DNA binding. Here we designed and synthesized DNA-intercalating Ru(II) polypyridyl complexes Δ--[Ru(bpy)2(uip)]2+ and Λ-[Ru(bpy)2(uip)]2+ (bpy is 2,2′-bipyridyl, uip is 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding, photocleavage, topoisomerase inhibition, and cytotoxicity of the complexes were studied. As we expected, the synthesized Ru(II) complexes can intercalate into DNA base pairs and cleave the pBR322 DNA with high activity upon irradiation. The mechanism studies reveal that singlet oxygen (1O2) and superoxide anion radical (O2•−) may play an important role in the photocleavage. The inhibition of topoisomerases I and II by the Ru(II) complexes has been studied. The results suggest that both complexes are efficient inhibitors towards topoisomerase II by interference with the DNA religation and direct topoisomerase II binding. Both complexes show antitumor activity towards HELA, hepG2, BEL-7402, and CNE-1 tumor cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC50: 0.49 ± 0.21 μM) and HCT15 (IC50: 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function.  相似文献   

12.
Semisynthetic reactions were conducted on oleanolic acid, a common plant-derived oleanane-type triterpene. Ten rationally designed derivatives of oleanolic acid were synthesized based on docking studies and tested for their topoisomerase I and IIα inhibitory activity. Semisynthetic reactions targeted C-3, C-12, C-13, and C-17. Nine of the synthesized compounds were identified as new compounds. The structures of these compounds were confirmed by spectroscopic methods (1D, 2D NMR and MS). Five oleanolic acid analogues (S2, S3, S5, S7 and S9) showed higher activity than camptothecin (CPT) in the topoisomerase I DNA relaxation assay. Four oleanolic acid analogues (S2, S3, S5 and S6) showed higher activity than etoposide in a topoisomerase II assay. The results indicated that the C12–C13 double bond of the oleanolic acid skeleton is important for the inhibitory activity against both types of topoisomerases, while insertion of a longer chain at either position 3 or 17 increases the activity against topoisomerases by various degrees. Some of the synthesized compounds act as dual inhibitors for both topoisomerase I and IIα.  相似文献   

13.
Based on previous Topoisomerase II docking studies of naphthoquinone derivatives, a series of naphthoquinone-coumarin conjugates was synthesized through a multicomponent reaction from aromatic aldehydes, 4-hydroxycoumarin and 2-hydroxynaphthoquinone. The hybrid structures were evaluated against the α isoform of human topoisomerase II (hTopoIIα), Escherichia coli DNA Gyrase and E. coli Topoisomerase I. All tested compounds inhibited the hTopoIIα-mediated relaxation of negatively supercoiled circular DNA in the low micromolar range. This inhibition was specific since neither DNA Gyrase nor Topoisomerase I were affected. Cleavage assays pointed out that naphthoquinone-coumarins act by catalytically inhibiting hTopoIIα. ATPase assays and molecular docking studies further pointed out that the mode of action is related to the hTopoIIα ATP-binding site.  相似文献   

14.
Four series of cassiarin A derivatives with alkanoyl (3a3d), aroyl (4a4d), hydroxy/amino-substituted ethylene glycol (5a5c) and selenium-containing (6a) side chains were synthesized. Their antitumor activities were evaluated against BT474, CHAGO, HepG2, KATO-III, SW620 and CaSki cancer cell lines. Preliminary results demonstrated that 5b had moderate activities against HepG2 and KATO-III cell lines, while 5c showed moderate to high cytotoxicity against most tested cell lines. In addition, 6a exhibited moderate cytotoxicity against cervical cells, CaSki. DNA-binding and ethidium bromide displacement experiments suggested that 5c and 5b binds to DNA via an intercalative mode, whereas 6a did not. However, the selenium-containing cassiarin A derivative 6a inhibited topoisomerase II with more than 95% inhibition at the concentration of 50 μM. These cassiarin A derivatives showed lower toxicity to normal cells, WI-38 than amonafide therefore they are potential lead compounds to be further developed as new anticancer agents.  相似文献   

15.
Topoisomerase II is found to be present in two isoforms alpha and beta, and both the isoforms are regulated in cancerous tissue. Development of isoform-specific topoisomerase II poisons has been of great interest for cancer-specific drug targeting. In the present investigation using quantitative structure-activity analysis of ferrocene derivatives, we show that two derivatives of ferrocene, azalactone ferrocene and thiomorpholide amido methyl ferrocene, can preferentially inhibit topoisomerase IIbeta activity. Thiomorpholide amido methyl ferrocene shows higher inhibition of catalytic activity (IC(50) = 50 microM) against topoisomerase IIbeta compared to azalactone ferrocene (IC(50) = 100 microM). The analysis of protein DNA intermediates formed in the presence of these two compounds suggests that azalactone ferrocene readily induces formation of cleavable complex in a dose-dependent manner, in comparison with thiomorpholide amido methyl ferrocene. Both the compounds show significant inhibition of DNA-dependent ATPase activity of enzyme. These results suggest that azalactone ferrocene inhibits DNA passage activity of enzyme leading to the formation of cleavable complex, while thiomorpholide amido methyl ferrocene competes with ATP binding resulting in the inhibition of catalytic activity of enzyme. In summary, thiomorpholide amido methyl ferrocene and azalactone ferrocene show distinctly different mechanisms in inhibition of catalytic activity of topoisomerase IIbeta.  相似文献   

16.
For the development of novel anticancer agents, we designed and synthesized a total of 37 perimidine o-quinone derivatives containing the o-quinone group at the A or B ring and different substituents (alkyl groups, aryl groups or heterocycles) at the C ring of the compounds. The structure-activity relationships (SARs) were established based on the cytotoxicity data of compounds from the HL-60, Huh7, Hct116, and Hela cell lines. The cytotoxicity results showed that most compounds exhibited potent cytotoxicity. In particular, compound b-12 showed the best anti-proliferative activity (IC50 ≤ 1 μM) against four cancer cell lines and strong potency against the HL-60/MX2 (0.47 μM) cell line, which is resistant to Topo II poisons. Further studies showed that b-12 exhibited potent Topo IIα inhibitory activity (IC50 = 7.54 μM) compared with Topo I, which acted as a class of non-intercalative Topo IIα catalytic inhibitor by inhibiting the ATP binding site of Topo II. Cell apoptosis and cell cycle assays confirmed that b-12 could induce the apoptosis of Huh7 cells in a dose-dependent manner.  相似文献   

17.
Three series of indeno[1,2-c]isoquinolines bearing a ferrocenyl entity were synthesized and evaluated for DNA interaction, topoisomerase I and II inhibition, and cytotoxicity against breast human cancer cell lines. In the first and second series, the ferrocenyl scaffold was inserted as a linker between the two nitrogen atoms. In the last series, it was introduced at the end of the carbon chain. The present study showed that the ferrocenyl entity enhanced the topoisomerase II inhibition. Most compounds showed a potent growth inhibitory effect on MDA-MB-231 cell line with the IC50 in μM range.  相似文献   

18.
Topoisomerase II is required for the viability of all eukaryotic cells. It plays important roles in DNA replication, recombination, chromosome segregation, and the maintenance of the nuclear scaffold. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between arginyl-tRNA-protein transferase (Ate1) and the N-terminal domain of the S. cerevisiae topoisomerase II, including the potential site of interaction. Ate1 is a component of the N-end rule protein degradation pathway which targets proteins for degradation. We also propose a previously unidentified role for Ate1 in modulating the level of topoisomerase II through the cell cycle.  相似文献   

19.
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme–DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.  相似文献   

20.
AimDesign and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim.Materials & methodsAll the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity.ResultsCompound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIβ inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号