首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The effects of removing Na+ from the incubation medium on basal and secretagogue induced zymogen release by pancreatic fragments and isolated pancreatic acini were studied by both morphological evaluation and measurement of amylase release. In both fragments and isolated acini, removal of Na+ led to an increased basal secretion of zymogen granule contents from acinar cells via exocytosis; secretory material, however, accumulated in acinar and ductular lumina as a result of the lack of fluid secretion necessary to wash out the enzymes. In studies with fragments, after Na+ removal there was no significant increase in amylase release into the medium; isolated acini, in contrast, showed an increased amylase release consistent with the shorter distance from the acinar lumen to the bathing medium. Stimulation with either bethanechol or caerulein led to a further depletion of zymogen granules in both preparations; in the absence of Na+ secretory product accumulated in intracellular lakes as well as in duct lumens. The hypothesis that Na+ influx is important in stimulus-secretion coupling to release intracellular Ca2+ was directly tested by measuring 45Ca2+ efflux. No effect of removing Na+ on 45Ca2+ efflux was seen. It was concluded, therefore, that while Na+ is essential for pancreatic fluid secretion, it is not necessary for the secretion of zymogen granule contents into acinar lumina.Supported by NIH grant GM-19998 from the United States Public Health Service  相似文献   

2.
This study examines the influence of ovariectomy and administration of a pharmacologic dose of estradiol on amylase release from isolated-dispersed rat pancreatic acini and cholecystokinin receptors on rat acinar cell membranes. Rats were sham ovariectomized (intact) or ovariectomized (Ovx) and 21 day timed release pellets containing either estradiol (2.5 mg) or vehicle, were implanted subcutaneously. Eighteen days later, pancreatic acini were isolated from rats by collagenase digestion and differential centrifugation. Total cellular amylase, basal and cholecystokinin octapeptide (CCK8) stimulated amylase release and CCK membrane receptors were measured. Acini isolated from estradiol treated Ovx rats had significantly greater total cellular amylase, compared to acini isolated from either intact or Ovx rats. The amplitude of both total stimulated amylase release and percent total stimulated amylase release were significantly greater for acini isolated from vehicle treated Ovx rats, than acini isolated from either intact or estradiol treated Ovx rats. The magnitude of percent total amylase release of acini isolated from estradiol treated Ovx rats was significantly lower than that of acini isolated from intact rats. Cholecystokinin receptor concentration was significantly greater on membranes prepared from vehicle treated Ovx rats, compared to membranes prepared from either intact or estradiol treated Ovx rats. These data indicate that ovariectomy is associated with increased responsiveness of pancreatic acini to CCK stimulation, while chronic estradiol treatment of ovariectomized rats is associated with increased total cellular amylase and decreased acinar cell responsiveness to CCK8. Estrogen mediated alterations in acinar cell amylase content and amylase release may play a role in estrogen related pancreatitis.  相似文献   

3.
The present study investigates the effect of reactive oxygen species (ROS) on actin filament reorganisation and its relevance to exocytosis in pancreatic acinar cells. Treatment of pancreatic acini with cholecystokinin (CCK-8) induced spatial and temporal changes in actin filament reorganisation with an initial depolymerisation of the apical actin barrier followed by an increase in the actin filament content in the subapical area leading to amylase release. Hydrogen peroxide (H(2)O(2)) increased actin filament content and potentiated the polymerizing effects of CCK-8 in these cells but abolished the disruption of the apical actin layer and amylase release induced by CCK-8. Similar to CCK-8, ROS generated by the oxidation of hypoxanthine (HX) with xanthine oxidase (XOD) induced an initial decrease in actin filaments located under the apical membrane followed by a smaller increase in the content of actin filaments in the subapical area. XOD-generated ROS are able to increase amylase release in pancreatic acini although combination with CCK-8 leads to abnormal exocytosis. We provide evidence that indicates that CCK-8- and ROS-induced actin reorganisation is entirely dependent on Ca(2+) mobilisation and independent of PKC activation. The regulation of the actin cytoskeleton by ROS might be involved in radical-induced cell injury in pancreatic acinar cells.  相似文献   

4.
Summary Cholecystokinin (CCK) and acetylcholine, at concentrations greater than those required for maximal pancreatic enzyme secretion, elicit a submaximal secretory response. The mechanism for this secretagogue-induced unresponsiveness is unknown. Using isolated pancreatic acini of the mouse, we now find that high concentrations of secretagogues also induce a profound alteration in acinar morphology, characterized by the formation of spherical protrusions on the basal surface of the cells. Since both the determination of cell shape and exocytosis may involve calcium and contractile proteins, we used a calcium-free medium and cytochalasin B (CB) to evaluate the importance of a contractile mechanism in the secretory and morphological effects of high concentrations of CCK-octapeptide (CCK8). Incubation in a calcium-free medium partially blocked CCK-induced unresponsiveness, but brought about dissociation of the acini. CB at a concentration of 3 g/ml caused the disappearance of apical microfilaments and, most strikingly, completely prevented the morphological alteration induced by CCK8. Furthermore, CB converted the biphasic dose-response curve for CCK8-induced amylase release to a monophasic shape, such that the amylase release stimulated by a high concentration of CCK8 (10 nM) was augmented. It is concluded, therefore, that a contractile process involving microfilaments may mediate secretagogue-induced unresponsiveness in pancreatic acinar cells.  相似文献   

5.
GP2 is a glycoprotein found in pancreatic acinar cells. Its subcellular distribution suggests that it may be involved both in exocytosis and endocytosis. Immunocytochemical studies have demonstrated GP2 to be present on the membrane and in the matrix of zymogen granules, on Golgi saccules, on the apical and basolateral surfaces of the plasma membrane, and in the lumina of acini. In addition, this protein was observed in small vacuoles and tubular structures previously identified as "basal lysosomes," "snake-like tubules," and in lysosomes. Because the latter group of structures are involved in endocytosis, it is possible that GP2 may be involved in this phenomenon. GP2 was readily detectable in pancreatic juice and was totally sedimentable by ultracentrifugation, as assessed by Western blot analysis. Induced lysis of isolated zymogen granules also caused release of GP2 in a sedimentable form which, by electron microscopy, appeared as a fibrillar structure. Immunocytochemical localization of amylase was studied in parallel with GP2 and was found in the secretory product to be associated with thread-like structures, presumably the pancreatic thread protein. The physiological significance of these observations is discussed.  相似文献   

6.
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.  相似文献   

7.
The microfilaments in the acinar cell of the exocrine pancreas are essentially located in the apical part of the cell: thin microfilaments (50 A), cytochalasin B (CB)-sensitive, form the axis of the microvilli and a network lying beneath the apical membrane; thicker filaments (100 A), at least partly CB-insensitive, form bundles parallel to the plasma cell membrane and the desmosomal links. CB interaction with the acinar cell of the exocrine pancreas involves at least two sites: a membrane site involved in the inhibitory effect of CB on the monosaccharide transport and a less sensitive site at the filamentous level at least partly responsible for the inhibitory effect of CB in the secretion of the exportable enzyme from the pancreatic cell. CB did not alter the energy balance of the acinar cell nor the exchanges of 15-Ca between the extracellular medium and the pancreatic tissue. CB (2 times 10-minus 7 and 2 times 10-minus 6 M) has secretagogue properties whereas CB (2 times 10-minus 5 M) has inhibitory effect on stimulated secretion and secretagogue properties. The mechanism of these secretory effects is not yet explained. The analysis presented in this investigation affords strong evidence for the involvement of the microfilamentous network in the last steps of the secretory cycle in the acinar cell of the exocrine pancreas.  相似文献   

8.
The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.  相似文献   

9.
Atomic force microscopy reveal pit-like structures typically containing three or four, approximately 150 nm in diameter depressions at the apical plasma membrane in live pancreatic acinar cells. Stimulation of secretion causes these depressions to dilate and return to their resting size following completion of the process. Exposure of acinar cells to cytochalasin B results in decreased depression size and a loss in stimulable secretion. It is hypothesized that depressions are the fusion pores, where membrane-bound secretory vesicles dock and fuse to release vesicular contents. Zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, contain the starch digesting enzyme, amylase. Using amylase-specific immunogold labeling, localization of amylase at depressions following stimulation of secretion is demonstrated. This study confirms depressions to be the fusion pores in pancreatic acinar cells. High-resolution images of the fusion pore in live pancreatic acinar cells reveal the structure in much greater detail than has previously been observed.  相似文献   

10.
血糖浓度对糖尿病大鼠胰腺外分泌功能的影响   总被引:2,自引:0,他引:2  
用链佐霉素诱导大鼠产生尿病,其胰腺组织淀粉的含量降低,胆囊收缩素(CCK-8)刺激所引起的胰淀粉酶分泌也明显降低。用一种可以降低糖尿病大鼠血糖,但不影响其血清胰岛素水平的药物--钒酸钠灌胃,可翻转上述变化。体外实验分析表明,高糖可抑制胰腺泡蛋白质的合成,还可以引起胰腺泡膜丙二醛含量增加,从而提示,糖尿病大鼠胰外分泌功能障碍与血液葡萄浓度过高有密切关系。  相似文献   

11.
The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells.  相似文献   

12.
The action of Pseudomonas aeruginosa cytotoxin on isolated pancreatic acini was investigated. The release of amylase and serine protease zymogens from the isolated rat pancreatic acini was induced with increasing amounts of cytotoxin in vitro. The stimulated release of amylase reached 30% of total cellular content with 100 micrograms/mL of the purified cytotoxin. The induced release of amylase, trypsinogen, proelastase, and chymotrypsinogen reached the maximum after 75 minutes of incubation while lactate dehydrogenase began to appear after 15 minutes of incubation with a secondary biphasic increase at 75 min of incubation. The concentrations of acinar mRNAs of amylase, trypsinogen, proelastase, and chymotrypsinogen, as measured by dot-blot hybridization with the cloned cDNAs of amylase, trypsinogen I, proelastase II, and chymotrypsinogen B of the rat, decreased with time and were significantly lower than in the untreated acini. It is concluded that cytotoxin stimulates the release of amylase and protease zymogens with a concomitant increase in membrane permeability and a decrease of cellular mRNA levels. The inhibition of gene expression is attributable merely to a generalized toxic effect upon cellular metabolism.  相似文献   

13.
Activation of neurokinin (NK)-1 receptors but not of NK-3 stimulates amylase release from isolated pancreatic acini of the rat. Immunofluorescence studies show that NK-1 receptors are more strongly expressed than NK-3 receptors on pancreatic acinar cells under basal conditions. No studies have examined the expression of the two NK receptor populations in pancreatic acini during pancreatitis in rats. We therefore investigated the relationships between expression of these two tachykinin receptors and experimental acute pancreatitis induced by stimulating pancreatic amylase with caerulein (CK) in rats. Hyperstimulation of the pancreas by CK caused an increase in plasma amylase and pancreatic water content and resulted in morphological evidence of cytoplasmic vacuolization. Immunofluorescence analysis revealed a similar percentage of NK-1 receptor antibody immunoreactive acinar cells in rats with pancreatitis and in normal rat tissue but a larger percentage of NK-3 receptor immunoreactive cells in acute pancreatitis than in normal pancreas. Western blot analysis of NK-1 and NK-3 receptor protein levels after CK-induced pancreatitis showed no change in NK-1 receptors but a stronger increase in NK-3 receptor expression in pancreatic acini compared with normal rats thus confirming the immunofluorescence data. These new findings support previous evidence that substance P-mediated functions within the pancreas go beyond sensory signal transduction contributing to neurogenic inflammation, and they suggest that substance P plays a role in regulating pancreatic exocrine secretion via acinar NK-1 receptors. The significant increase in NK-3 receptors during pancreatic stimulation suggests that NK-3 receptors also intervene in the pathogenesis of mild acute pancreatitis in rats.  相似文献   

14.
The purpose of the present study was to evaluate the effects of EtOH on RhoA, actin cytoskeleton, catenin p120 and E-cadherin and their interactions in CCK-stimulated rat pancreatic acini. In isolated rat pancreatic acinar cells, CCK stimulation enhanced protein expression and association of RhoA, Gα13, Vav-2, catenin p120 and E-cadherin. CCK induced translocation and activation of RhoA and actin-filamentous assembly and disassembly. RhoA was diffusely localized throughout the acinar cell in the resting state and redistributed to the apical site in response to submaximal CCK stimulation and to a lesser extent in response to supramaximal CCK stimulation. Ethanol and subsequent submaximal CCK stimulation mimicked the effect of supramaximal CCK stimulation in terms of amylase secretion and morphologic effects. However, inhibition of RhoA translocation and activation were observed only with ethanol pretreatment. Ethanol followed by supramaximal CCK stimulation disrupted the well-defined localization of catenin p120 and E-cadherin around the lateral plasma membrane. These data suggest that ethanol impaired the assembly and disassembly of actin cytoskeleton and impaired cell–cell adhesion via the RhoA signaling pathways, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini.  相似文献   

15.
Guinea pig pancreatic acini prepared with purified collagenase   总被引:8,自引:0,他引:8  
Dispersed guinea pig pancreatic acinar cells have been used to investigate several aspects of stimulus-secretion coupling but possess the disadvantage that they are less sensitive and less responsive to secretagogues than in vitro preparations of intact pancreatic tissue (lobules). To overcome the poor responsiveness of isolated acinar cells, we have developed a new procedure for preparing dispersed, intact pancreatic acini whose sensitivity to secretagogues and morphological characteristics are similar to those of pancreatic lobules. Dispersed acini can be manipulated as suspensions of cells and full access of macromolecular probes to apical and basolateral plasmalemmal domains is obtained. Acini were prepared in good yields (~70% on a DNA basis) using only purified collagenase and mild mechanical shear in medium containing 2.0 mM Ca2+. Morphologically, acinar cells in the preparations retained intact junctional complexes, asymmetrical distribution of intramembranous particles between apical and basolateral plasmalemmal domains, and polarized distribution of intracellular organelles as found in intact pancreas. Dose-response curves of acini and mechanically prepared lobules to caerulein, carbachol, and bombesin were similar though acini were more sensitive to the C-terminal octapeptide of cholecystokinin. Net stimulated secretory protein discharge was ~36% over 2 h. Crude collagenase was purified for use in preparation of acini by Sephadex G-75 column chromatography which resolved collagenase from clostripain and a non-sulfhydryl-requiring protease. The purified collagenase contained at least four proteins with molecular weights between 85 000 and 110 000. Collagenase with <0.14 units of protease per unit of collagenase produced highly responsive acini; collagenase with >0.9 units of protease per unit of collagenase yielded unresponsive acini. Acini incubated with crude collagenase, chymotrypsin, or the non-sulfhydryl-requiring protease showed depressed secretory response to caerulein. Freeze-fracture electron microscopy of protease-treated acini indicated that the intramembranous particles aggregated and that many of the tight junctions had undergone a proliferation of non-cross-linked sealing strands which extended far down the basolateral plasma membrane and encircled gap junctions. Acini incubated with purified collagenase or with a clostripain-containing fraction from the Sephadex G-75 column appeared unaltered. This procedure produces acini which are morphologically and biochemically similar to the in situ pancreas and overcomes the poor response to secretagogues by isolated pancreatic acinar cells.  相似文献   

16.
Summary The plant alkaloid, catharanthine, was shown to stimulate release of amylase from pancreatic fragments and to cause extensive degranulation of pancreatic acinar cells with accumulation of membrane material in the Golgi region. The extent and time course of maximal catharanthine stimulation was comparable to that induced by the cholinergic analog bethanechol. Antimycin inhibited the action of catharanthine while atropine did not. Removal of Ca2+ from the incubation medium inhibited amylase release induced by catharanthine but did not affect release induced by bethanechol. Catharanthine induced a delayed release of 45Ca2+ from prelabeled pancreatic fragments as compared to bethanechol. It is suggested therefore that catharanthine activates the physiological pathway controlling amylase release by causing a rise in cytoplasmic Ca2+ but the mechanism by which this occurs is different from that caused by physiological secretagogues.Supported by a grant from the NIH (GM-19998)I am indebted for technical assistance to E. Roach and S. Bennett  相似文献   

17.
In this study, we investigated the immunocytochemical distribution of NK-1 and NK-3 tachykinin receptors in guinea pig and rat isolated pancreatic acini. In dispersed acinar cells from guinea pig, immunofluorescence staining detected similar densities of NK-1 and NK-3 receptors; conversely, rat acinar cells expressed NK-1 receptors more strongly than NK-3 receptors. In line with previous functional studies, these immunocytochemical findings suggest that guinea pig NK-1 and NK-3 receptors and rat NK-1 receptors alone play a direct stimulatory role in the basal pancreatic acinar amylase release.  相似文献   

18.
Effects of synthetic human pancreastatin-52 and human pancreastatin-29 on pancreatic secretion and blood flow were examined in rats and dogs. Synthetic human pancreastatin-52 and human pancreastatin-29 were equally potent in suppressing the release of amylase stimulated by cholecystokinin in rats in vivo. However, neither human pancreastatin-52 nor human pancreastatin-29 altered basal and cholecystokinin-stimulated amylase release from isolated dispersed rat pancreatic acini. In studies in dogs, human pancreastatin-29 suppressed releases of amylase and protein stimulated by cholecystokinin, but did not alter pancreatic blood flow. These results suggest that the inhibitory effects of pancreastatin on pancreatic secretion do not involve a direct action on pancreatic acinar cells nor alteration of pancreatic blood flow. Pancreastatin probably is important in regulating exocrine pancreatic secretions as well as endocrine pancreatic secretions.  相似文献   

19.
The role of extracellular Ca2+ in pancreatic acinar membrane damage (cellular injury) by nicotine, membrane-active agents (mellitin, snake venom and Ca2+ ionophore A23187) and secretagogues (CCK-8 and secretin) was investigated. Freshly isolated dispersed pancreatic acini from 18 h fasted adult rats were incubated with one of the aforementioned agents, in the absence and presence of Ca2+. Cellular injury was assessed by measuring the release of pulse-labeled 51Cr and LDH. In addition, release of amylase, trypsinogen and chymotrypsinogen was also determined. In the absence of Ca2+ nicotine (6 mM) caused a profound release of 51Cr and LDH as well as amylase, trypsinogen and chymotrypsinogen from the isolated pancreatic acini. Release of these enzymes and 51Cr decreased sharply with addition of increasing concentrations (0.25-5 mM) of Ca2+. Release of 51Cr and amylase by snake venom (50 micrograms/ml) was found to be 100 and 25% higher, respectively, in the absence of Ca2+ than in its presence. On the other hand, the Ca2+ ionophore A23187 (7 micrograms/ml) was found to be effective in releasing 51Cr and amylase only in the presence of Ca2+. CCK-8, (0.25nM), secretin (1 microM) and mellitin (0.5 microgram/ml) although significantly stimulated amylase secretion (225-350%) in the presence of Ca2+, none of the agents induced 51Cr release from acini, either in the absence or in the presence of extracellular Ca2+. It is concluded that the extracellular Ca2+ plays no specific role in cytotoxic injury in isolated pancreatic acini.  相似文献   

20.
The importance of glycosylation in cell surface expression of muscarinic receptors in cultured guinea pig pancreatic acini was investigated. Recovery of the muscarinic receptor population after carbachol-induced down regulation was blocked by cycloheximide but not by tunicamycin, although tunicamycin reduced [3H]mannose incorporation into acinar macromolecules by up to 90%. Tunicamycin treatment also failed to alter carbachol stimulation of amylase secretion from cultured acini. These results indicate that glycosylation of the glandular subtype of muscarinic receptor in the pancreatic acinar cell is not necessary for its insertion in the plasma membrane or for its functional activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号