首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies on the chemical and biological properties of annual pack ice at a coastal station in Terra Nova Bay (74°41.72′S, 164°11.63′E) were carried out during austral spring at 3-day intervals from 5 November to 1 December 1997. Temporal changes of nutrient concentrations, algal biomasses, taxonomic composition, photosynthetic pigment spectra and P–E relationships were studied. Quantity, composition and degradation rates of organic matter in the intact sea ice were also investigated. In addition, microcosm experiments were carried out to evaluate photosynthetic and photo-acclimation processes of the sympagic flora in relation to different light regimes. High concentrations of ammonia were measured in four ice-cores (weighted mean values of the cores ranged from 4.3 ± 1.9 μM to 7.2 ± 3.4 μM), whereas nitrate and phosphate displayed high concentrations (up to 35.9 μM and 7.6 μM, respectively) only in the bottom layer (135–145 cm depth). Particulate carbohydrate and protein concentrations in the intact sea ice ranged from 0.5 to 2.3 mg l−1 and 0.2 to 2.0 mg l−1, respectively, displaying a notable accumulation of organic matter in the bottom colored layer, where bacterial enzymatic activities also reached the highest values. Aminopeptidase activity was extremely high (up to 19.7 μM l−1 h−1 ± 0.05 in the bottom layer), suggesting a rapid turnover rate of nitrogen–enriched organic compounds (e.g. proteins). By contrast, bacterial secondary production was low, suggesting that only a very small fraction of mobilized organic matter was converted into bacterial biomass (<0.01‰). The sympagic autotrophic biomass (in terms of chlorophaeopigments) of the bottom layer was high, increasing during the sampling period from 680 to 2480 μg l−1. Analyses of pigments performed by HPLC, as well as microscope observations, indicated that diatoms dominated bottom communities. The most important species were Amphiprora sp. and Nitschia cfr. stellata. Bottom sympagic communities showed an average P B max of 0.12 mgC mg Chl−1 and low photoadaptation index (E k=18 μE m−2 s−1, E m=65 μE m−2 s−1). Results of the microcosm experiment also indicated that communities were photo-oxidized when irradiance exceeded 100 μE m−2 s−1. This result suggests that micro- autotrophs inhabiting sea ice might have a minor role in the pelagic algal blooms. Accepted: 4 August 1999  相似文献   

2.
The aim of the study was to investigate the capacity of microalgae from the extremely low light habitat of bottom ice to acclimate to different light conditions. During austral spring 1997 the bottom layer of land-fast ice in Terra Nova Bay displayed high values of microalgal biomass up to 2,400 μg Chla L−1 concentrated in a few centimetres ice layer. The algal assemblage was dominated by benthic pennate diatoms. Photoacclimation of the microalgae was addressed in terms of pigment spectra and photosynthetic parameters. Immediate and long term (minutes to days) changes in the photoprotective pigments (DD-cycle) were analysed. Severe photodamage occurred in microalgal assemblages exposed to high light. However, part of the bottom ice algal community showed a notable ability to acclimate to high irradiance levels. Changes in photosynthetic parameters preceded the sudden abrupt changes in pigment synthesis and the rapid increase in biomass and growth rates. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

3.
Water samples and particulate materials settling under the pack ice were collected in an ice-covered area near the Terra Nova Bay Italian Station during late summer 1995, in order to study short-term changes in the biochemical composition of particulate organic matter. At the end of the study period the phytoplankton biomass increase (up to >3.0 μg chlorophyll-a l−1) was probably related to the intrusion under the pack ice of chlorophylls-enriched surface waters coming from the near ice-free area. Such increase was associated also with a notable increase in particulate organic matter concentrations, as well as in particulate organic matter vertical fluxes (up to >100 mg C m−2 day−1). Proteins were the most abundant biochemical class of particulate organic matter (on average about 49%), followed by lipids (29%) and carbohydrates (22%). By contrast, organic matter collected in the sediment trap was characterized by the dominance of lipids (about 55% of the total biopolymeric carbon flux) over carbohydrates (28%) and proteins (17%). The hydrolizable particulate biopolymeric carbon accounted for about 23% of total biopolymeric carbon. This value was about one-half of that found in ice-free waters, suggesting that the suspended particulate organic material under the pack ice was less digestible than in ice-free waters or was already partially digested. Despite this, and the decay of labile organic compounds in the sediment trap during the deployment, material settling towards the sea bottom under the pack ice in Terra Nova Bay, owing to its high lipid content, might represent an important high-quality food source for benthic consumers. Finally, assuming as possible the intrusion under sea ice of primary organic matter-enriched waters, we hypothesize the occurrence of a “fertilization” effect deriving from ice-melting areas towards under-ice waters, supplying the latter with an additional rate of primary organic matter. Accepted: 18 February 1999  相似文献   

4.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

5.
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic–pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind. m−3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5–2.3 mg Chl-a m−3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind. m−2) and wet biomass (<0.2 g m−2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.  相似文献   

6.
R. Gradinger 《Polar Biology》1999,22(3):169-177
The abundance and biomass of sympagic meiofauna were studied during three cruises to the Antarctic and one summer expedition to the central Arctic Ocean. Ice samples were collected by ice coring and algal pigment concentrations and meiofauna abundances were determined for entire cores. Median meiofauna abundances for the expeditions ranged from 4.4 to 139.5 × 103 organisms m−2 in Antarctic sea ice and accounted for 40.6 × 103 organisms m−2 in Arctic multi-year sea ice. While most taxa (ciliates, foraminifers, turbellarians, crustaceans) were common in both Arctic and Antarctic sea ice, nematodes and rotifers occurred only in the Arctic. Based on the calculated biomass, the potential meiofauna ingestion rates were determined by applying an allometric model. For both hemispheres, daily and yearly potential ingestion rates were below the production values of the ice algal communities, pointing towards non-limited feeding conditions for ice meiofauna year-round. Accepted: 29 March 1999  相似文献   

7.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

8.
The aim of this study was to assess the role of platelet ice microalgal communities in seeding pelagic blooms. Nutrient dynamics, microalgal biomass, photosynthetic parameters, cell densities and species succession were studied in two mesocosm experiments, designed to simulate the transition of microalgal communities from platelet ice habitat to pelagic conditions. The microalgal assemblages were dominated by diatoms, 70% of which were benthic species such as Amphiprora kufferathii, Nitzschia stellata, and Berkeleya adeliensis. Photoacclimation of benthic species was inadequate also at relatively low irradiances. Exceptional growth capacity at different light levels was observed for pelagic species such as Fragilariopsis cylindrus and Chaetoceros spp. which may be important in seeding blooms at ice breakup. Fragilariopsis cylindrus showed high growth rates both at 65 and 10% of incident light and in nutrient replete as well as in nutrient depleted conditions. Five days after inoculation, phytoplankton biomass increased and nutrient concentrations decreased in both light conditions. Nutrient uptake rates were up to 9.10 μmol L−1 d−1 of TIN in the high light tank and 6.18 μmol L−1 d−1 in the low light tank and nutrient depletion in the high light tank occurred 3 days prior to depletion in the low light tank. At nutrient depletion, biomass concentrations were similar in both tanks, 30 and 34 μg Chla L−1. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

9.
This is the first study to determine vertical distribution patterns of sympagic meiofauna, including metazoans, protozoans and eggs >20 μm, in the Amundsen Gulf (southeastern Beaufort Sea, Arctic). Full sea-ice cores were sampled from mid of March to end of May 2008 (Circumpolar Flaw Lead system study). Investigations were performed on first-year ice from three pack- and three fast-ice stations. Additionally, 5-cm bottom-ice sections were sampled at 13 pack-ice and 5 fast-ice stations. The metazoan community was composed of nematodes, rotifers, copepods, copepod nauplii, platyhelminthes and a few rare taxa such as mollusks, cnidarians and nemerteans. High numbers of eggs, between 50 and 2,188 eggs L−1, particularly of nematodes and copepods, were present in the ice. Investigations revealed also eggs of the pelagic species Calanus hyperboreus and Sagitta spp. within the ice, so that further research is needed to clarify whether more organisms than expected might use this habitat as a reproduction ground. Many different morphotypes of protozoans were observed in the samples, especially ciliates of the order Euplotida. The highest abundance was always found in the lowermost 5 cm of the ice cores, nevertheless sympagic meiofauna was not restricted to that part of the ice. Integrated meiofauna abundance ranged between 41 and 4,738 × 102 Ind. m−2 and was highest in the fast ice in early May. Differences between pack and fast ice in terms of integrated meiofauna communities and vertical distribution were not significant, while the analysis of the bottom-ice sections indicated both a temporal development and ice-type-specific differences.  相似文献   

10.
The vertical distribution of bacterial abundance and biomass was investigated in relation to algal biomass in ice cores taken from drifting ice floes in two Arctic shelf areas: the Barents Sea and the Laptev Sea. Bacteria were not homogeneously distributed throughout the cores but occurred in dense layers. Different types of distribution patterns were found: either a single maximum occurred inside or at the bottom of the ice floe or maxima were found in different parts of the floes. Bacterial concentrations ranged from 0.4 to 36.7 · 105 cells ml−1. The size spectra of sea-ice bacteria were determined by image analysis. Cell sizes showed considerable variation between the ice floes. In multi-year sea ice, the largest bacteria were observed in the area of an internal chlorophyll a maximum. No specific vertical distribution patterns were found in first-year ice floes. Bacterial biomass for the ice cores ranged from 19.2 to 79.2 mg C m−2, and the ratio of bacterial:ice algal biomass ranged from 0.43 to 10.42. A comparison with data collected from fast ice revealed large differences in terms of cell size, abundance and biomass. Received: 7 September 1995 / Accepted: 10 September 1996  相似文献   

11.
Pack ice, brines and seawaters were sampled in October 2003 in the East Antarctic sector to investigate the structure of the microbial communities (algae, bacteria and protozoa) in relation to the associated physico-chemical conditions (ice structure, temperature, salinity, inorganic nutrients, chlorophyll a and organic matter). Ice cover ranged between 0.3 and 0.8 m, composed of granular and columnar ice. The brine volume fractions sharply increased above −4°C in the bottom ice, coinciding with an important increase of algal biomass (up to 3.9 mg C l−1), suggesting a control of the algae growth by the space availability at that period of time. Large accumulation of NH4 + and PO4 3− was observed in the bottom ice. The high pool of organic matter, especially of transparent exopolymeric particles, likely led to nutrients retention and limitation of the protozoa grazing pressure, inducing therefore an algal accumulation. In contrast, the heterotrophs dominated in the underlying seawaters.  相似文献   

12.
The summer Phaeocystis antarctica bloom increases under-ice phytoplankton biomass in McMurdo Sound, Antarctica. The magnitude of mesozooplankton grazing on this bloom is unknown, and determines whether this production is available to the pelagic food web. We measured mesozooplankton abundance and body content of dimethylsulfoniopropionate (DMSP) during the McMurdo Sound austral summer (2006 and 2006–2007). Abundance varied from 20 to 4,500 ind. m−3 (biomass 0.02–274.0 mg C m−3), with peaks in mid-December and late-January/February. Abundance was higher but total zooplankton biomass lower in our study compared to previous reports. Copepods and the pteropod Limacina helicina dominated the zooplankton in both abundance and biomass. DMSP was detected in all zooplankton groups, with highest concentrations in copepod nauplii and L. helicina (95 and 54 nmol mg−1 body C, respectively). Experiments suggested that L. helicina obtains DMSP by directly grazing on P. antarctica, which often accumulates to high biomass under the summer sea ice in McMurdo Sound.  相似文献   

13.
The seasonal distribution of sympagic amphipods was investigated in the Chesterfield Inlet area of northwestern Hudson Bay (63°30′N). Amphipod abundance was measured by photographic samples and species composition was determined by sweep net samples. Twelve species of amphipods were collected, the most common being Ischyrocerus anguipes, Pontogeneia inermis, Apherusa megalops and Weyprechtia pinguis. The major environmental variable affecting amphipod distribution was water depth. Amphipod abundance was highest near 20 m and near zero past 50 m. The maximum recorded abundance was 1367 m−2. A minor factor affecting the distribution of amphipods was snow depth, through its modifying effect on light and thereby the growth of ice algae. Amphipods began to inhabit the sea ice shortly after its formation. From the beginning of March, the number of amphipods on the ice increased steadily to about the 3rd week of April, after which numbers declined. This pattern coincided with the seasonal ice algae abundance. Amphipods reduced ice algal biomass over 20-m depth by 63%. No evidence of diurnal changes in abundance was observed. Received: 15 May 1996 / Accepted: 4 November 1996  相似文献   

14.
Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.  相似文献   

15.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

16.
The biomass and productivity of sea ice algae was assessed in the northwestern Barents Sea in May 2004. Sea ice algal pigment content was patchy with a mean of 18.5 ± 8.9 mg Chla m−2. The algal community was dominated by the diatom Nitzschia frigida. Primary production measured by 14C incubations was between 0.37 and 2.8 mg C m−2 h−1, which compared well with oxygen-based methods using the diffusive boundary layer approach (0.071–1.1 mg C m−2 h−1). Given the differences in the irradiances under which these two sets of measurements were made, there was a strong level of consistency between the two sets of results. Measurements of primary production were consistent with previous Arctic measurements but high spatial heterogeneity made a regional estimate of production inappropriate.  相似文献   

17.
Viruses play a significant role in nutrient cycling within the world’s oceans and are important agents of horizontal gene transfer, but little is know about their entrainment into sea ice or their temporal dynamics once entrained. Nilas, grease ice, pancake ice, first-year sea ice floes up to 78 cm in thickness, and under-ice seawater were sampled widely across Amundsen Gulf (ca. 71° N, 125° W71^\circ \hbox{N}, 125^\circ \hbox{W}) for concentrations of viruses and bacteria. Here, we report exceptionally high virus-to-bacteria ratios in seawater (45–340) and sea ice (93–2,820) during the autumn freeze-up. Virus concentrations ranged from 4.8 to 27 × 106  ml−1 in seawater and, scaled to brine volume, 5.5 to 170 × 107 ml−1 in sea ice. Large enrichment indices indicated processes of active entrainment from source seawater, or viral production within the ice, which was observed in 2 of 3 bottle incubations of sea ice brine at a temperature (-7°C-7^\circ\hbox{C}) and salinity ( 110 \permille110 \permille) approximating that in situ. Median predicted virus-to-bacteria contact rates (relative to underlying seawater) were greatest in the top of thick sea ice (66–78 cm: 130×) and lowest in the bottom of medium-thickness ice (33–37 cm: 23×). The great abundance of viruses and more frequent interactions between bacteria and viruses predicted in sea ice relative to underlying seawater suggest that sea ice may be a hot spot for virally mediated horizontal gene transfer in the polar marine environment.  相似文献   

18.
Viral abundance, burst sizes, lytic production and temperate phage were investigated in land-fast ice at two sites in Prydz Bay Antarctica (68°S, 77°E) between April and November 2008. Both ice cores and brine were collected. There was no seasonal pattern in viral or bacterial numbers. Across the two sites virus abundances ranged between 0.5 × 105 and 5.1 × 105 viruses ml−1 in melted ice cores and 0.6 × 105–3.5 × 105 viruses ml−1 in brine, and bacterial abundances between 2.7 × 104 and 17.3 × 104 cells ml−1 in melted ice cores and 3.9 × 104–32.5 × 104 cells ml−1 in brine. Virus to bacterium ratios (VBR) showed a clear seasonal pattern in ice cores with lowest values in winter (range 1.2–20.8), while VBRs in brine were lower (0.2–4.9). Lytic viral production range from undetectable to 2.0 × 104 viruses ml−1 h−1 in ice cores with maximum rates in September and November. In brine maximum, lytic viral production occurred in November (1.18 × 104 viruses ml−1 h−1). Low burst sizes were typical (3.94–4.03 viruses per bacterium in ice cores and 3.16–4.0 viruses per bacterium in brine) with unusually high levels of visibly infected cells—range 40–50%. This long-term investigation revealed that viral activity was apparent within the sea ice throughout its annual cycle. The findings are discussed within the context of limited data available on viruses in sea ice.  相似文献   

19.
Algal communities and export of organic matter from sea ice were studied in the offshore marginal ice zone (MIZ) of the northern Barents Sea and Nansen Basin of the Arctic Ocean north of Svalbard by means of ice cores and short-term deployed sediment traps. The observations cover a total of ten stations within the drifting pack ice, visited over a period of 3 years during the period of ice melt in May and July. Maximum flux of particulate organic carbon and chlorophyll a from the ice at 1 m depth (1,537 mg C m−2 per day and 20 mg Chl a m−2 per day) exceeded the flux at 30 m by a factor of 2 during spring, a pattern that was reversed later in the season. Although diatoms dominated the ice-associated algal biomass, flagellates at times revealed similarly high biomass and typically dominated the exported algal carbon. Importance of flagellates to the vertical flux increased as melting progressed, whereas diatoms made the highest contribution during the early melting stage. High export of ice-derived organic matter and phytoplankton took place simultaneously in the offshore MIZ, likely as a consequence of ice drift dynamics and the mosaic structure of ice-covered and open water characteristic of this region.  相似文献   

20.
Okhotsk Sea pack ice from Shiretoko in northern Hokkaido, sampled in March 2007, contained microalgal communities dominated by the centric diatoms Thalassiosira nordenskioeldi and T. punctigera. Domination by this genus is very unusual in sea ice. Communities from nearby fast ice at Saroma-ko lagoon were dominated by Detonula conferavea and Odontella aurita. Average microalgal biomass of the Okhotsk Sea pack ice (surface and bottom) was 1.59 ± 1.09 μg chla l−1 and for fast ice (bottom only) at nearby Saroma-ko lagoon, 16.5 ± 3.2 μg l−1 (=31.1 ± 5.0 mg chla m−2). Maximum quantum yield of the Shiretoko pack ice algal communities was 0.618 ± 0.056 with species-specific data ranging between 0.211 and 0.653. These community values are amongst the highest recorded for sea ice algae. Rapid light curves (RLC) on individual cells indicated maximum relative electron transfer rates (relETR) between 20.8 and 60.6, photosynthetic efficiency values (α) between 0.31 and 0.93 and onset of saturation values (E k) between 33 and 91 μmol photons m−2 s−1. These data imply that the pack ice algal community at Shiretoko was healthy and actively photosynthesising. Maximum quantum yield of the Saroma-ko fast ice community was 0.401 ± 0.086, with values for different species between 0.361 and 0.560. RLC data from individual Saroma-ko fast ice algal cells indicated relETR between 55.3 and 60.6, α values between 0.609 and 0.816 and E k values between 74 and 91 μmol photons m−2 s−1 which are consistent with measurements in previous years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号