首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important aspect of myocardial injury is the role of neutrophils in post-ischemic damage to the heart. Stimulated neutrophils initiate a series of reactions that produce toxic oxidizing agents. Superoxide rapidly dismutases to H2O2 and neutrophils contain myeloperoxidase which catalyzes the oxidation of Cl- by H2O2 to yield hypochlorous acid (HOCl). The highly reactive HOCl combines non-enzymatically with nitrogenous compounds to generate long-lived, non-radical oxidants, monochloramine and taurine N-monochloramine. We investigated the role of oxygen radicals and long-lived oxidants on cardiac sarcoplasmic reticulum function, which plays a major role in the regulation of intracellular Ca2+ and thereby in the generation of force. Incubation of sarcoplasmic reticulum with phorbol myristate acetate (PMA)-stimulated neutrophils (4 x 10(6) cells/ml) significantly decreased calcium uptake rate (0.85 +/- 0.11 to 0.11 +/- 0.06 mumol/min per mg) and Ca2+-ATPase activity (1.67 +/- 0.08 to 0.46 +/- 0.10 mumol/min per mg). Inclusion of myeloperoxidase inhibitors (cyanide, sodium azide and 3-amino-1,2,4-triazole), catalase, superoxide dismutase plus catalase, and alpha-tocopherol significantly protected (P less than 0.01) calcium uptake rates and Ca2+-ATPase activity of sarcoplasmic reticulum. Superoxide dismutase (10 microgram/ml) alone or deferoxamine (1 mM) had no protective effect in this system. The maximum inhibition of sarcoplasmic reticulum function was observed with (3-4) x 10(6) cells/ml in 4-6 min. HOCl and NH2Cl inhibited calcium uptake rate and Ca2+-ATPase activity of sarcoplasmic reticulum in a dose-dependent manner (2-20 microM), whereas H2O2 damaged sarcoplasmic reticulum at concentrations ranging from 5 to 25 mM. HOCl (20 microM) inhibited 80-90% of Ca2+-uptake rate and Ca2+-ATPase activity and L-methionine (0.1-1 mM) provided complete protection. We conclude that stimulated neutrophils damage cardiac sarcoplasmic function by generation of myeloperoxidase-catalyzed oxidants.  相似文献   

2.
The effect of scavengers of oxygen radicals on canine cardiac sarcoplasmic reticulum (SR) Ca2+ uptake velocity was investigated at pH 6.4, the intracellular pH of the ischemic myocardium. With the generation of oxygen radicals from a xanthine-xanthine oxidase reaction, there was a significant depression of SR Ca2+ uptake velocity. Xanthine alone or xanthine plus denatured xanthine oxidase had no effect on this system. Superoxide dismutase (SOD), a scavenger of .O2-, or denatured SOD had no effect on the depression of Ca2+ uptake velocity induced by the xanthine-xanthine oxidase reaction. However, catalase, which can impair hydroxyl radical (.OH) formation by destroying the precursor H2O2, significantly inhibited the effect of the xanthine-xanthine oxidase reaction. This effect of catalase was enhanced by SOD, but not by denatured SOD. Dimethyl sulfoxide (Me2SO), a known .OH scavenger, completely inhibited the effect of the xanthine-xanthine oxidase reaction. The observed effect of oxygen radicals and radical scavengers was not seen in the calmodulin-depleted SR vesicles. Addition of exogenous calmodulin, however, reproduced the effect of oxygen radicals and the scavengers. The effect of oxygen radicals was enhanced by the calmodulin antagonists (compounds 48/80 and W-7) at concentrations which showed no effect alone on Ca2+ uptake velocity. Taken together, these findings strongly suggest that .OH, but not .O2-, is involved in a mechanism that may cause SR dysfunction, and that the effect of oxygen radicals is calmodulin dependent.  相似文献   

3.
Incubation of human term placental mitochondria with Fe2+ and a NADPH-generating system initiated high levels of lipid peroxidation, as measured by the production of malondialdehyde. Malondialdehyde formation was accompanied by a corresponding decrease of the unsaturated fatty acid content. This NADPH-dependent lipid peroxidation was strongly inhibited by superoxide dismutase and singlet oxygen scavengers, markedly stimulated by paraquat, but was not affected by hydroxyl radical scavengers. Catalase enhanced the production of malondialdehyde by placental mitochondria. The effects of catalase and hydroxyl radical scavengers suggest that the initiation of NADPH-dependent lipid peroxidation is not dependent upon the hydroxyl radical produced via an iron-catalyzed Fenton reaction. These studies provide evidence that hydrogen peroxide strongly inhibits NADPH-dependent mitochondrial lipid peroxidation. The inhibitory effect of superoxide dismutase and stimulatory effect of paraquat, which was abolished by the addition of superoxide dismutase, suggests that superoxide may promote NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

4.
Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals   总被引:1,自引:0,他引:1  
Leukotriene B4 chemotactic activity and leukotriene C4, D4 and E4 slow reacting substance activity were rapidly decreased by hydroxyl radicals generated by two different iron-supplemented acetaldehyde-xanthine oxidase systems. At low Fe2+, leukotriene inactivation was inhibited by catalase, superoxide dismutase, mannitol and ethanol, suggesting involvement of hydroxyl radicals generated by the iron-catalyzed interaction of superoxide and H2O2 (Haber-Weiss reaction). Leukotriene inactivation increased at high Fe2+ concentrations, but was no longer inhibitable by superoxide dismutase, suggesting that inactivation resulted from a direct interaction between H2O2 and Fe2+ to form hydroxyl radicals (Fenton reaction). The inactivation of leukotrienes by hydroxyl radicals suggests that oxygen metabolites generated by phagocytes may play a role in modulating leukotriene activity.  相似文献   

5.
The role of iron in the peroxidation of polyunsaturated fatty acids is reviewed, especially with respect to the involvement of oxygen radicals. The hydroxyl radical can be generated by a superoxide-driven Haber-Weiss reaction or by Fenton's reaction; and the hydroxyl radical can initiate lipid peroxidation. However, lipid peroxidation is frequently insensitive to hydroxyl radical scavengers or superoxide dismutase. We propose that the hydroxyl radical may not be involved in the peroxidation of membrane lipids, but instead lipid peroxidation requires both Fe2+ and Fe3+. The inability of superoxide dismutase to affect lipid peroxidation can be explained by the fact that the direct reduction of iron can occur, exemplified by rat liver microsomal NADPH-dependent lipid peroxidation. Catalase can be stimulatory, inhibitory or without affect because H2O2 may oxidize some Fe2+ to form the required Fe3+, or, alternatively, excess H2O2 may inhibit by excessive oxidation of the Fe2+. In an analogous manner reductants can form the initiating complex by reduction of Fe3+, but complete reduction would inhibit lipid peroxidation. All of these redox reactions would be influenced by iron chelation.  相似文献   

6.
Oxygen-based free radical generation by ferrous ions and deferoxamine   总被引:3,自引:0,他引:3  
Deferoxamine accelerates the autooxidation of iron as measured by the rapid disappearance of Fe2+, the associated appearance of Fe3+, and the uptake of oxygen. Protons are released in the reaction. The formation of H2O2 was detected by the horseradish peroxidase-catalyzed oxidation of scopoletin, and the formation of hydroxyl radicals (OH.) was suggested by the formation of the OH. spin trap adduct (DMPO/OH). with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and the generation of the methyl radical adduct on the further addition of dimethyl sulfoxide. (DMPO/OH). adduct formation was inhibited by catalase but not by superoxide dismutase. The oxidant formed converted iodide to a trichloroacetic acid-precipitable form (iodination) and was bactericidal to logarithmic phase Escherichia coli. Both iodination and bactericidal activity was inhibited by catalase and by OH. scavengers, but not by superoxide dismutase. Iodination was optimal in 5 x 10(-4) M acetate buffer, pH 5.0, and when the Fe2+ and deferoxamine concentrations were equimolar at 10(-4) M. Fe2+ could not be replaced by Fe3+, Co2+, Zn2+, Ca2+, Mg2+, or Mn2+, or deferoxamine by EDTA, diethylenetriaminepentaacetic acid, or bathophenanthroline. These findings indicate that Fe2+ and deferoxamine can act as an oxygen radical generating system, which may contribute to its biological effects in vitro and in vivo.  相似文献   

7.
1. In the presence of dihydroxyfumarate, horseradish peroxidase catalyses the conversion of p-coumaric acid into caffeic acid at pH 6. This hydroxylation is completely inhibited by superoxide dismutase. 2. Dihydroxyfumarate cannot be replaced by ascorbate H2O2, NADH, cysteine or sulphite. Peroxidase can be replaced by high (10 mM) concentrations of FeSO4, but this reaction is almost unaffected by superoxide dismutase. 3. Hydroxylation by the peroxidase/dihydroxyfumarate system is completely inhibited by low concentrations of Mn2+ or Cu2+. It is proposed that this is due to the ability of these metal ions to react with the superoxide radical O2--. 4. Hydroxylation is partially inhibited by mannitol, Tris or ethanol and completely inhibited by formate. This seems to be due to the ability of these reagents to react with the hydroxyl radical -OH. 5. It is concluded that O2-- is generated during the oxidation of dihydroxyfumarate by peroxidase and reacts with H2O2 to produce hydroxyl radicals, which then convert p-coumaric acid into caffeic acid.  相似文献   

8.
1. Dihydroxyfumarate slowly autoxidizes at pH6. This reaction is inhibited by superoxide dismutase but not by EDTA. Mn2+ catalyses dihydroxyfumarate oxidation by reacting with O2 leads to to form Mn3+, which seems to oxidize dihydrofumarate rapidly. Cu2+ also catalyses dihydroxyfumarate oxidation, but by a mechanism that does not involve O2 leads to. 2. Peroxidase catalyses oxidation of dihydroxyfumarate at pH6; addition of H2O2 does not increase the rate. Experiments with superoxide dismutase and catalase suggest that there are two types of oxidation taking place: an enzymic, H2O2-dependent oxidation of dihydroxyfumarate by peroxidase, and a non-enzymic reaction involving oxidation of dihydroxyfumarate by O2 leads to. The latter accounts for most of the observed oxidation of dihydroxyfumarate. 3. During dihydroxyfumarate oxidation, most peroxidase is present as compound III, and the enzymic oxidation may be limited by the low rate of breakdown of this compound. 4. Addition of p-coumaric acid to the peroxidase/dihydroxyfumarate system increases the rate of dihydroxyfumarate oxidation, which is now stimulated by addition of H2O2, and is more sensitive to inhibition by catalase but less sensitive to superoxide dismutase. Compound III is decomposed in the presence of p-coumaric acid. p-Hydroxybenzoate has similar, but much smaller, effects on dihydroxyfumarate oxidation. However, salicylate affects neither the rate nor the mechanism of dihydroxyfumarate oxidation. 5. p-Hydroxybenzoate, salicylate and p-coumarate are hydroxylated by the peroxidase/dihydroxyfumarate system. Experiments using scavengers of hydroxyl radicals shown that OH is required. Ability to increase dihydroxyfumarate oxidation is not necessary for hydroxylation to occur.  相似文献   

9.
The purpose of this study was to explore the role of singlet oxygen in cardiovascular injury. To accomplish this objective, we investigated the effect of singlet oxygen [generated from photoactivation of rose-bengal] on the calcium transport and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum and compared these results with those obtained by superoxide radical, hydrogen peroxide and hydroxyl radical. Isolated cardiac SR exposed to rose bengal (10 nM) irradiated at (560 nm) produced a significant inhibition of Ca 2+ uptake; from 2.27 ± 0.05 to 0.62 ± 0.05 µmol Ca+/mg.min (mean ± SE) (P < 0.01) and Ca2+-ATPase activity from 2.08 ± 0.05 µmol Pi/min. mg to 0.28 ± 0.04 µmol Pi/min. mg (mean ± SE) (P < 0.01). The inhibition of calcium uptake and Ca2+-ATPase activity by rose bengal derived activatedoxygen (singlet oxygen) was dependent on the duration of exposure and intensity of light. The singlet oxygen scavengers ascorbic acid and histidine significantly protected SR Ca2+-ATPase against rose bengal derived activated oxygen species but superoxide dismutase and catalase did not attenuate the inhibition. SDS-polyacrylamide gel electrophoresis of SR exposed to photoactivated rose bengal up to 14 min, demonstrated complete loss of Ca2+-ATPase monomer band which was significantly protected by histidine. Irradiation of rose bengal also caused an 18% loss of total sulfhydryl groups of SR. On the other hand, superoxide (generated from xanthine oxidase action on xanthine) and hydroxyl radical (0.5 mM H2O2 + Fe2+ -EDTA) as well as H2O2 (12 mM) were without any effect on the 97,000 dalton Ca2+-ATPase band ofsarcoplasmic reticulum. The results suggest that oxidative damage of cardiac sarcoplasmic reticulum may be mediated by singlet oxygen. This may represent an important mechanism by which the oxidative injury to the myocardium induces both a loss of tension development and arrhythmogenesis.  相似文献   

10.
Phage DNA, as well as plasmid and mammalian DNA's, were exposed to a superoxide and hydroxyl radical-generating system containing NADPH-cytochrome P-450 reductase and mitomycin C, both with and without added Fe3+-ADP, in phosphate buffer at pH 7.5. The generation of superoxide (O2-.) and hydroxyl (.OH) radicals in the system was demonstrated by using ESR spectrometry with N-tert -butyl-alpha-phenylnitrone (PBN) as a spin trapping agent. Only the lambda DNA isolated after exposure to the O2-./.OH-generating system containing many lower molecular weight DNA fragments indicating DNA strand breaks. This breakage was completely inhibited by a .OH radical scavenger (sodium benzoate) and by catalase, but only slightly by superoxide dismutase. Thyroid and plasmid DNA's were both cleaved when exposed to the O2-./.OH-generating systems. It is suggested that the mechanism of DNA scission by mitomycin C described here closely resembles that induced by the anthracycline drugs.  相似文献   

11.
The relationship between the degradation reaction of cytochrome P-450 and lipid peroxidation was studied utilizing bovine adrenal cortex mitochondria. The two reactions were found to be closely correlated in terms of their response to storage of the mitochondrial preparation, stimulation by Fe2+, inhibition by EDTA and their initiation by cumene hydroperoxide. Both reactions were also found not to be inhibited by catalase, superoxide dismutase, 1,4-diazabicyclo-(2,2,2)-octane and alcohols, indicating that H2O2, superoxide, singlet oxygen and hydroxyl radicals do not participate in these reactions. Yet, diphenylamine proved to be a powerful inhibitor for both reactions, suggesting the involvement of a radical species. Cumene hydroperoxide could induce these two reactions at below 0.1 mM concentrations in the presence of molecular oxygen. The chemiluminescence observed during the Fe2+-mediated lipid peroxidation reaction which was not inhibited by either superoxide dismutase or 1,4-diazabicyclo-(2,2,2)-octane, was biphasic: one was a rapid burst; and the other was a slowly increasing emission. The latter portion of the emission of light coincided with the formation of malondialdehyde. These results indicate that in adrenal cortex mitochondria the degradation of cytochrome P-450 is closely related to lipid peroxidation.  相似文献   

12.
In order to evaluate the O-2 participation in NADPH-dependent microsomal lipid peroxidation, we used reconstructed system which contained detergent-solubilized NADPH-dependent cytochrome P-450 reductase, cytochrome P-450, phospholipid liposomes, NADPH and Fe3+-ADP. Lipid peroxidation, monitored by the formation of thiobarbituric acid-reactive substance, was increased with increasing concentration of detergent-solubilized NADPH cytochrome P-450 reductase, cytochrome P-450 or Fe3+-ADP. Cytochrome P-450-dependent lipid peroxidation was parallel to O-2 generation monitored by chemiluminescence probe with 2-methyl-6-(p-methoxyphenol)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one. Lipid peroxidation was significantly inhibited by superoxide dismutase, but not by catalase or sodium benzoate. The reconstructed system herein described is considered to be very close to NADPH-dependent microsomal lipid peroxidation system.  相似文献   

13.
Previously, we showed the presence in radish (Raphanus sativus L.) plasmalemma vesicles of an NAD(P)H oxidase, active at pH 4.5-5.0, which elicits the formation of anion superoxide (Vianello and Macrí (1989) Biochim. Biophys. Acta 980, 202-208). In this work, we studied the role of hydrogen peroxide and iron ions upon this oxidase activity. NADH oxidation was stimulated by ferrous ions and, to a lesser extent, by ferric ions. Salicylate and benzoate, two known hydroxyl radical scavengers, inhibited both basal and iron-stimulated NADH oxidase activity. The iron chelators EDTA (ethylenediaminetetraacetic acid) and DFA (deferoxamine melysate) at high concentrations (2 mM) inhibited the NADH oxidation, whereas they were ineffective at lower concentrations (80 microM); the subsequent addition of ferrous ions caused a rapid and limited increase of oxygen consumption which later ceased. Hydrogen peroxide was not detected during NADH oxidation but, in the presence of salicylate, its formation was found in significant amounts. NADH oxidase activity was also associated to a Fe2+ oxidation which was only partially inhibited by salicylate. Ferrous ion oxidation was partially inhibited by catalase and prevented by superoxide dismutase, while ferric ion reduction was abolished by catalase and unaffected by superoxide dismutase. These results show that during NADH oxidation iron ions undergo oxidoreduction and that hydrogen peroxide is produced and rapidly consumed. As previously suggested, this oxidation appears linked to the univalent oxidoreduction of iron ions by a reduced flavoprotein of radish plasmalemma which is then converted to a radical form. The latter, reacting with oxygen generates the superoxide anion which dismutases to H2O2. Hydrogen peroxide, through a Fenton's reaction, may react with Fe2+ to produce hydroxyl radicals, or with Fe3+ to generate the superoxide anion.  相似文献   

14.
The superoxide radicals generated by the xanthine oxidase reaction reduced the myofibrillar Ca2+-ATPase activity. This negative effect was prevented by superoxide dismutase or by dithiothreitol, a protective thiol compound. Partial protection was achieved by catalase, while mannitol was ineffective. The myofibrillar Ca2+-ATPase exposed to O2-. radicals did not modify the affinity for Ca2+ while it showed a remarkable reduction of Vmax measured at the saturating level of Ca2+. The O2-. inhibited myofibrillar ATPase showed a higher value of Km for the cofactor associated to a reduced value of Vmax when studied in the presence of increasing concentration of ATP. Thus, circumstances that enhance the production of cardiac O2- radicals can be considered a negative metabolic event capable of depressing the myofibrillar Ca2+-ATPase activity.  相似文献   

15.
Purified commercial hyaluronic acid contains significant amounts of iron. Addition of Fe2+ to solutions of it causes depolymerization, which is inhibited by catalase and scavengers of the hydroxyl radical (. OH) but not by superoxide dismutase. Fe3+ is ineffective. Ascorbic acid also depolymerizes hyaluronic acid, apparently because it can reduce Fe3+ in the reaction mixtures to Fe2+. Ascorbate-induced depolymerization is inhibited by the specific iron chelator desferrioxamine, by catalase, and by scavengers of the hydroxyl radical. The relevance of these observations to rheumatoid arthritis and inflammatory joint diseases is discussed.  相似文献   

16.
Treatment of bovine pulmonary artery smooth muscle microsomes with the superoxide radical generating system hypoxanthine plus xanthine oxidase stimulated iron release, hydroxyl radical production and lipid peroxidation. Pretreatment of the microsomes with deferoxamine or dime thy lthiourea markedly inhibited lipid peroxidation, and prevented hydroxyl radical production without appreciably altering iron release. The superoxide radical generating system did not alter the ambient superoxide dismutase activity. However,addition of exogenous superoxide dismutase prevented superoxide radical induced iron release,hydroxyl radical production and lipid peroxidation. Simultaneous treatment of the microsomes with deferoxamine, dimethylthiourea or superoxide dismutase prevented hydroxyl radical production and liqid peroxidation. While deferoxamine or dimethylthiourea did not appreciably alter iron release, superoxide dismutase prevented iron release. However, addition of deferoxamine, dimethylthiourea or superoxide dismutase even 2 min after treatment did not significantly inhibit lipid peroxidation, hydroxyl radical production and iron release. Pretreatment of microsomes with the anion channel blocker 4,4’- dithiocyano 2,′- disulphonic acid stilbine did not cause any discernible change in chemiluminiscence induced by the superoxide radical generating system but markedly inhibited lipid peroxidation without appreciably altering iron release and hydroxial radical production.  相似文献   

17.
The enzymic and non-enzymic systems which induce and control lipid peroxidation (LPO) in muscle cells were studied. The maximal activity of enzymic NADH- and NADPH-dependent LPO was observed in sarcoplasmic reticulum (SR) membranes. It was found that an essential role in enzymic LPO induction belongs to superoxide radical anions and to hydroxyl radicals. The maximal concentration of the natural LPO inhibitor, alpha-tocopherol, was detected in SR membranes. The glutathione peroxidase and superoxide dismutase activities were determined in the cytosol fraction of myocytes. The role of compartmentation of enzymic and non-enzymic systems of LPO induction in muscle cells is discussed.  相似文献   

18.
J S Han 《Mutation research》1992,266(2):77-84
In experiments designed to determine which active oxygen species contribute to hydrogen peroxide (HP)-induced reversion in strain TA104 of Salmonella typhimurium, 1,10-phenanthroline (an iron chelator, which prevents the formation of hydroxyl radicals from HP and DNA-bound iron by the Fenton reaction), sodium azide (a singlet oxygen scavenger), and potassium iodide (an hydroxyl radical scavenger) inhibited HP-induced reversion. These results indicate that hydroxyl radicals generated from HP by the Fenton reaction, and perhaps singlet oxygen, contribute to HP-induced reversion in TA104. However, reduced glutathione (reduces Fe3+ to Fe2+ and/or HP to water), diethyldithiocarbamic acid (an inhibitor of superoxide dismutase), diethyl maleate (a glutathione scavenger), and 3-amino-1,2,4-triazole (an inhibitor of catalase) did not inhibit HP-induced reversion in TA104. Thus, superoxide radical anions and HP itself do not appear to be the cause of HP-induced reversion in this strain. In experiments on the effect of 5 common dietary compounds (beta-carotene, retinoic acid, and vitamins A, C and E), chlorophyllin (CHL), and ergothioneine, the frequency of revertants in TA104 increased above the spontaneous frequency in the presence of beta-carotene or vitamin C (about 2-fold) or vitamin A (about 3-fold). The 5 dietary antimutagens and CHL did not inhibit HP-induced reversion in TA104. However, L-ergothioneine inhibited HP-induced reversion in this strain. Therefore, it is likely that L-ergothioneine is a scavenger of hydroxyl radicals or an inhibitor of their formation, and perhaps of singlet oxygen, at the concentrations tested in TA104.  相似文献   

19.
In a previous study (Minotti, G., 1989, Arch. Biochem. Biophys. 268, 398-403) NADPH-supplemented microsomes were found to reduce adriamycin (ADR) to semiquinone free radical (ADR-.), which in turn autoxidized at the expense of oxygen to regenerate ADR and form O2-. Redox cycling of ADR was paralleled by reductive release of membrane-bound nonheme iron, as evidenced by mobilization of bathophenanthroline-chelatable Fe2+. In the present study, iron release was found to increase with concentration of ADR in a superoxide dismutase- and catalase-insensitive manner. This suggested that membrane-bound iron was reduced by ADR-. with negligible contribution by O2-. or interference by its dismutation product H2O2. Following release from microsomes, Fe2+ was reconverted to Fe3+ via two distinct mechanisms: (i) catalase-inhibitable oxidation by H2O2 and (ii) catalase-insensitive autoxidation at the expense of oxygen, which occurred upon chelation by ADR and increased with the ADR:Fe2+ molar ratio. Malondialdehyde formation, indicative of membrane lipid peroxidation, was observed when approximately 50% of Fe2+ was converted to Fe3+. This occurred in presence of catalase and low concentrations of ADR, which prevented Fe2+ oxidation and favored only partial Fe2+ autoxidation, respectively. Lipid peroxidation was inhibited by superoxide dismutase via increased formation of H2O2 from O2-. and excessive Fe2+ oxidation. Lipid peroxidation was also inhibited by high concentrations of ADR, which favored maximum Fe2+ release but also caused excessive Fe2+ autoxidation via formation of very high ADR:Fe2+ molar ratios. These results highlighted multiple and diverging effects of ADR, O2-., and H2O2 on iron release, iron (auto-)oxidation and lipid peroxidation. Stimulation of malondialdehyde formation by catalase suggested that lipid peroxidation was not promoted by reaction of Fe2+ with H2O2 and formation of hydroxyl radical. The requirement for both Fe2+ and Fe3+ was indicative of initiation by some type of Fe2+/Fe3+ complex.  相似文献   

20.
The mechanism of mitomycin C-induced lipid peroxidation has been studied at pH 7.5, using systems containing phospholipid membranes (liposomes) and an Fe3+-ADP complex with purified NADPH-cytochrome P-450 reductase. Both O2- and H2O2 are generated during the aerobic enzyme-catalyzed reaction in the presence of mitomycin C. Hydroxyl radical is formed in the reaction by the reduction of H2O2. This is catalyzed by the Fe2+-ADP complex in a phosphate buffer or to a lesser extent when in a Tris-HCl buffer. The reduction of Fe3+-ADP to Fe2+-ADP is mainly achieved by O2-. The resulting Fe2+-ADP in the presence of O2 forms a perferryl ion complex which is a powerful stimulator of lipid peroxidation. However, the formation of such an iron-oxygen complex is strongly inhibited by phosphate ions, which do not interfere with the generation of OH radicals. These findings suggest that, since lipid peroxidation occurs in a Tris-HCl buffer (but not in a phosphate buffer), the OH radical is unlikely to be involved in the observed lipid peroxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号