首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The classification of taxa within Collembola (Springtails, Hexapoda) has been controversial. In this study, we combined complete 18S rRNA gene with partial 28S rRNA gene (D7-D10) sequences to investigate the phylogeny of Collembola. About 2500 aligned sites of thirty species representing 29 genera from14 families of Collembola were analyzed, including one species of Neelipleona from which no sequence has been reported previously.The phylogenetic trees were obtained by different methods (maximum parsimony, maximum likelihood, and Bayesian analysis). Our results supported the monophyly of two of the four taxonomic groups of Collembola summarized by Deharveng [Deharveng, L., 2004. Recent advances in Collembola systematics. Pedobiologia 48, 415–433.], namely of Poduromorpha and of Symphypleona. Within Poduromorpha, Neanuridae was monophyletic with high support, but Hypogastruridae was not. Entomobryomorpha was paraphyletic, as the Tomoceroidea (Tomoceridae and Oncopoduridae) was found to be apart from the other entomobryomorphs. In the latter Isotomoidea and Entomobryoidea joined into a group with moderate support. Within Symphypleona, the phylogenetic relationship [(Sminthuridae + Bourletiellidae) + Sminthurididae] was consistent with traditional morphological studies. Neelipleona grouped with Symphypleona in all trees, with moderate support in the ML and Bayesian analyses.  相似文献   

2.
The nuclear ITS region of 19 species of Alnus was amplified and sequenced. The inferred molecular phylogeny shows that all species of the genus Alnus form a monophyletic group close to Betula and that the fundamental dichotomy within the genus lies between the subgenera Alnaster and Gymnothyrsus, sensu Murai (1964). The subgenus Alnaster appears to be basal in the genus, based on archaism of morphological features, and branching close to the root of the trees due to low ITS divergence from genus Betula. The monophyly of the section Clethropsis is not supported by the present data: Alnus nepalensis is positioned in the subgenus Gymnothyrsus, away from A. nitida and A. maritima. Surprisingly, A. formosana sect. Japonicae is closely tied to A. maritima sect. Clethropsis, with which it shares few morphological traits, and is separate from A. japonica sect. Japonicae with which it shares many traits. An increase in substitution rate is noted in the group comprising A. formosana, A. maritima and A. nitida relative to the rest of the genus, which appears to have had, on the average, a very slow mutation rate. Alnus glutinosa, the designated type for the genus, appears to be representative of the genus both for morphological characters and evolutionary rate. North-East Asia is comforted in its position of origin of the genus since not only does it have the highest number of species and representatives in all deep branching lineages, there are also fewer transcontinental migrations when a North-East Asian ancestor is postulated than when a North American ancestor is postulated.  相似文献   

3.
The phylogenetic relationships of the angiosperm generaByblis andRoridula have been the subject of ongoing taxonomic controversy. Twenty-eight taxa of varying degrees of alleged relationship, including 3 members of theWinteraceae (as an outgroup), were investigated using partial sequences of 18S rRNA (small subunit) and also compared against the morphological data set fromHufford's (1992) cladistic treatment of 80 members of theRosidae-Asteridae. The morphological analysis placed the two genera in a clade with theSarraceniaceae in theCorniflorae-Asterid group as a sister taxon to anEricales-Hydrangeales clade. The 18S rRNA analysis supports the recently publishedrbcL DNA analysis ofAlbert & al. (1992), withRoridula joined to taxa in the lowerRosidae, butByblis joining instead to members of theAsteridae near theSolanaceae. Comparisons for congruence between the three analyses placeByblis in the higher Asterid group near theSolanaceae, andRoridula possibly nearer theSarraceniaceae andEricales. These results imply that the traditional morphological characters used to relate the two genera are possibly the result of convergence towards similar ecological and life-history strategies rather than synapomorphies.  相似文献   

4.
Complete nuclear-encoded small-subunit 18S rRNA (=SSU rRNA) gene sequences were determined for the prasinophyte green alga Mantoniella squamata; the charophycean green algae Chara foetida, Coleochaete scutata, Klebsormidium flaccidum, and Mougeotia scalaris; the bryophytes Marchantia polymorpha, Fossombronia pusilla, and Funaria hygrometrica; and the lycopod Selaginella galleottii to get a better insight into the sequential evolution from green algae to land plants. The sequences were aligned with several previously published SSU rRNA sequences from chlorophytic and charophytic algae as well as from land plants to infer the evolutionary relationships for major evolutionary lineages within the Chlorobionta by distance matrix, maximum parsimony, and maximum likelihood analyses. Phylogenetic trees created by the different methods consistently placed the Charophyceae on the branch leading to the land plants. The Charophyceae were shown to be polyphyletic with the Charales (charalean algae) diverging earlier than the Coleochaetales, Klebsormidiales, Chlorokybales, and Zygnematales (charophycean algae) which branch from a point closer to the land plants in most analyses. Maximum parsimony and maximum likelihood analyses imply a successive evolution from charophycean algae, particularly Coleochaetales, to bryophytes, lycopods, and seed plants. In contrast, distance matrix methods group the bryophytes together with the charophycean algae, suggesting a separate evolution of these organisms compared with the club moss and the seed plants. Correspondence to.: V.A.R. Huss  相似文献   

5.
The phylogenetic relationships of Chalara and allied taxa are studied based on ribosomal DAN sequences. Partial 28S rDNA and 18S rDNA regions from 26 strains were sequenced in this study. These and related sequences from GenBank were analyzed using parsimony and Bayesian analyses. Most of the Chalara species clustered in a strongly supported monophyletic lineage representing Helotiales. However, a few Chalara species appeared closely related to Xylariales. The phylogenetic significance of morphological characters observed in Chalara species are evaluated based on our sequence analyses. Conidial septation, conidial width and conidiophore pigmentation are thought to be indicative in understanding their evolutionary relationships. Sterile setae, which traditionally have been used to delimitate Chaetochalara from Chalara, are phylogenetically insignificant.  相似文献   

6.
Summary The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellateProrocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5 end, as judged by agarose gel electrophoresis and primer extension experiments.Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.  相似文献   

7.
Twenty strains of flattened amoebae including 17 isolated from fish were characterised morphologically both at light microscopical and ultrastructural levels and assigned to either the genus Vannella Bovee, 1965 or the genus Platyamoeba Page, 1969. Sequence-based phylogenetic analyses of SSU rRNA genes from a data set representing a total of 29 strains of flattened amoebae strongly indicated that morphological features discriminating between these genera do not reflect phylogenetic relationships of representative strains. Contrary to a previous study, strains of this expanded assemblage formed clusters that did not reflect their environmental origin. Monophyletic groups were of mixed origins and contained freshwater as well as marine strains of both genera isolated in geographically distant localities of various continents. These findings were supported by results of phylogenetic analyses of selected strains based on ITS sequences. However, topologies of acquired ITS trees were not congruent with results inferred from SSU rRNA analyses.  相似文献   

8.
The presence of Pneumocystis organisms was detected by nested-PCR at mitochondrial large subunit (mtLSU) rRNA gene in 23 respiratory samples from Asian macaques representing two species: Macaca mulatta and M. fascicularis. A very high level of sequence heterogeneity was detected with 18 original sequence types. Two genetic groups of Pneumocystis could be distinguished from the samples. Within each group, the extent of genetic divergence was low (2.5+/-1.4% in group 1 and 2.3+/-1.7% in group 2). Genetic divergences were systematically higher when macaque-derived sequence types were compared with Pneumocystis mtLSU sequences from other primate species (from 5.3+/-2.7% to 19.3+/-3.0%). The two macaque-derived groups may be considered as distinct Pneumocystis species. Surprisingly, these Pneumocystis species were recovered from both M. mulatta and M. fascicularis suggesting that host-species restriction may not systematically occur in the genus Pneumocystis. Alternatively, these observations question about the species concept in macaques.  相似文献   

9.
We investigate phylogenetic relationships among hornworts, liverworts and mosses, and their relationships to other green plant groups, by analysis of nucleotide variation in complete 18s rRNA gene sequences of three green algae, two hornworts, seven liverworts, nine mosses, and six tracheophytes. Parsimony and maximum-likelihood analyses yield a single optimal tree in which the hornworts are resolved as the basal group among land plants, and the liverworts and mosses are sister taxa that together form the sister clade to the tracheophytes. This phylogeny is internally robust as indicated by decay indices and by comparison (using both parsimony and likelihood criteria) to topologies representing five alternative hypotheses of bryophyte relationships. We discuss some possible reasons for differences between the phylogeny inferred from the rRNA data and those inferred from other character sets.  相似文献   

10.
To investigate the genetic diversity between the populations of woolly flying squirrels (Eupetaurus) from the eastern and western extremes of the Himalayas, partial mitochondrial cytochrome b gene sequences (390-810 bp) that were determined from the museum specimens were analyzed using maximum parsimony (MP) and maximum likelihood (ML) methods. The molecular data reveal that the two specimens that were collected in northwestern Yunnan (China) are members of the genus Eupetaurus. Reconstructed phylogenetic relationships show that the populations of Eupetaurus in the eastern and western extremes of the Himalayas are two distinct species with significant genetic differences (12%) and diverged about 10.8 million years ago. Eupetaurus is significantly different from Petaurista and Pteromys. The level of estimated pairwise-sequence divergence observed between Eupetaurus and Petaurista or Pteromys is greater than that observed between Eupetaurus and Trogopterus, Belomys, Glaucomys, or Hylopetes. Considering the divergence time of the two Eupetaurus groups, the glaciations and the uplift of the Himalayas and Qinghai-Tibet plateau during the Pliocene-Pleistocene period might be the major factors affecting the present distribution of Eupetaurus along the Himalayas.  相似文献   

11.
We investigated the phylogenetic relationships among most Chinese species of lizards in the genus Phrynocephalus (118 individuals collected from 56 populations of 14 well-defined species and several unidentified specimens) using four mitochondrial gene fragments (12S rRNA, 16S rRNA, cytochrome b, and ND4-tRNA(LEU)). The partition-homogeneity tests indicated that the combined dataset was homogeneous, and maximum-parsimony (MP), neighbor-joining (NJ), maximum-likelihood (ML) and Bayesian (BI) analyses were performed on this combined dataset (49 haplotypes including outgroups for 2058bp in total). The maximum-parsimony analysis resulted in 24 equally parsimonious trees, and their strict consensus tree shows that there are two major clades representing the Chinese Phrynocephalus species: the viviparous group (Clade A) and the oviparous group (Clade B). The trees derived from Bayesian, ML, and NJ analyses were topologically identical to the MP analysis except for the position of P. mystaceus. All analyses left the nodes for the oviparous group, the most basal clade within the oviparous group, and P. mystaceus unresolved. The phylogenies further suggest that the monophyly of the viviparous species may have resulted from vicariance, while recent dispersal may have been important in generating the pattern of variation among the oviparous species.  相似文献   

12.
The chain-forming dinoflagellate Alexandrium monilatum has been reported to be associated with widespread discolored water and increased fish mortality in the Mississippi Sound and off the eastern and western coasts of Florida. Previous studies over the last 60–70 years have determined that A. monilatum produces a harmful substance(s) that is predominantly contained in the cell mass as exhibited by apparent increased toxicity when the organism cytolyses. The current research in our lab corroborated earlier research demonstrating that A. monilatum produces a lipophilic toxin, unlike its Alexandrium relatives noted for their production of saxitoxin-like toxins. Using sophisticated chemical, chromatographic, and analytical techniques, we have successfully purified and identified the molecular structure of the toxin produced by A. monilatum. We utilized a 500 MHz NMR to carry out a number of experiments (i.e., 1H, 13C, COSY, HSQC, and HMBC) to unambiguously determine the molecular structure of the toxin. In addition, we report mass analysis of the toxin utilizing electrospray ionization-mass spectrometry (ESI-MS), matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS), and Q-TOF mass spectral techniques. The toxin is representative of a polyether macrolide with an empirical formula of C43H60O12. This toxic compound is shown to be identical to a Japanese tidepool toxin identified as goniodomin A, which is produced by another Alexandrium species.  相似文献   

13.
Details of the phylogenetic relationships among tetrahymenine ciliates remain unresolved despite a rich history of investigation with nuclear gene sequences and other characters. We examined all available species of Tetrahymena and three other tetrahymenine ciliates, and inferred their phylogenetic relationships using nearly complete mitochondrial cytochrome c oxidase subunit 1 (cox1) and small subunit (SSU) rRNA gene sequences. The inferred phylogenies showed the genus Tetrahymena to be monophyletic. The three “classical” morphology-and-ecology-based groupings are paraphyletic. The SSUrRNA phylogeny confirmed the previously established australis and borealis groupings, and nine ribosets. However, these nine ribosets were not well supported. Using cox1 gene, the deduced phylogenies based on this gene revealed 12 well supported groupings, called coxisets, which mostly corresponded to the nine ribosets. This study demonstrated the utility of cox1 for resolving the recent phylogeny of Tetrahymena, whereas the SSU rRNA gene provided resolution of deeper phylogenetic relationships within the genus.  相似文献   

14.
Summary Phylogenetic trees among eukaryotic kingdoms were inferred for large- and small-subunit rRNAs by using a maximum-likelihood method developed by Felsenstein. Although Felsenstein's method assumes equal evolutionary rates for transitions and transversions, this is apparently not the case for these data. Therefore, only transversiontype substitutions were taken into account. The molecules used were large-subunit rRNAs fromXenopus laevis (Animalia), rice (Plantae),Saccharomyces cerevisiae (Fungi),Dictyostelium discoideum (Protista), andPhysarum polycephalum (Protista); and small-subunit rRNAs from maize (Plantae),S. cerevisiae, X. laevis, rat (Animalia), andD. discoideum. Only conservative regions of the nucleotide sequences were considered for this study. In the maximum-likelihood trees for both large- and small-subunit rRNAs, Animalia and Fungi were the most closely related eukaryotic kingdoms, and Plantae is the next most closely related kingdom, although other branching orders among Plantae, Animalia, and Fungi were not excluded by this work. These three eukaryotic kingdoms apparently shared a common ancestor after the divergence of the two species of Protista,D. discoideum andP. polycephalum. These two species of Protista do not form a clade, andP. polycephalum diverged first andD. discoideum second from the line leading to the common ancestor of Plantae, Animalia, and Fungi. The sequence data indicate that a drastic change occurred in the nucleotide sequences of rRNAs during the evolutionary separation between prokaryote and eukaryote.  相似文献   

15.
Partial nucleotide sequences of the large subunit of ribulose-1,5-bisphosphate carboxylase (rubisco) gene (1333 base pairs: about 90% of the gene) from several seed plants were determined. Phylogenetic trees based on amino acid sequences were inferred by using the neighbor joining and maximum likelihood methods. The results indicate (1) monophyly of gnetum group (Ephedra, Gnetum, Welwitschia), (2) monophyly of extant gymnosperms containing gnetum group, which contradicts the results of morphological data.  相似文献   

16.
An unusually high divergence was observed in the ribosomal RNA genes of a free-living population of foraminifera belonging to the genusAmmonia. The sequences of a large-subunit (LSU) rDNA expansion segment D1 and flanking regions were obtained from 20 specimens namedAmmonia sp. 1 andAmmonia sp. 2. The sequence divergence between the two species averages 14%. Within each species it ranges from 0.2% to 7.1% inAmmonia sp. 1 and from 0.7% to 2.3% inAmmonia sp. 2. We did not find two specimens having identical sequences. Moreover, in opposition to the generally acaepted view, rDNA sequence variations were also found within a single individual. The variations among several rDNA copies in a single specimen ofAmmonia may reach up to 4.9%. Most of the observed variations result from multiplication of CA or TA serial repeats occurring in two particularly variable regions. For single base changes, C-T transitions are most frequently observed. We discuss the evolution of expansion segments and their use for phylogenetic studies. Correspondence to: J. Pawlowski  相似文献   

17.
A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.  相似文献   

18.
Evolutionary relationships among 116 representatives (80 genera) ofApiaceae (Umbelliferae) subfam.Apioideae were investigated by comparative sequencing of the two internal transcribed spacers of the 18S–26S nuclear ribosomal DNA repeat. The resultant phylogenies, inferred using maximum parsimony and neighbor-joining methods, clarified the relationships of several genera whose phylogenetic placements have heretofore been problematic. Comparisons between the phylogenies inferred and the distribution of several phytochemical (coumarins, flavonoids, and phenylpropenes) and morphological (stomates, pollen, and cotyledonary shape) characters were also made, revealing that many of these characters (like those morphological and anatomical characters of the fruit) are highly homoplastic. It is not surprising then that systems of classification ofApioideae based on these characters, particularly with regard to tribal and subtribal designations and relationships, are unsatisfactory. The results of recent serological investigations of the subfamily support several relationships proposed herein using molecular data.  相似文献   

19.
Molecular phylogeny of Drosophila based on ribosomal RNA sequences   总被引:4,自引:0,他引:4  
Nucleotide sequences of 72 species of Drosophilidae were determined for divergent D1 and D2 domains (representing 200 and 341 nucleotides respectively in D. melanogaster) of large ribosomal RNA, using the rRNA direct sequencing method. Molecular phylogenetic trees were reconstructed using both distance and parsimony methods and the robustness of the nodes was evaluated by the bootstrap procedure. The trees obtained by these methods revealed four main lineages or clades which do not correspond to the taxonomical hierarchy. In our results, the genus Chymomyza is associated with the subgenus Scaptodrosophila of the genus Drosophila and their cluster constitutes the most ancient clade. The two other clades are constituted of groups belonging to the subgenus Sophophora of the genus Drosophila: the so-called Neotropical clade including the willistoni and saltans groups and the obscura-melanogaster clade itself split into three lineages: (1) obscura group + ananassae subgroup, (2) montium subgroup, and (3) melanogaster + Oriental subgroups. The fourth clade, the Drosophila one, contains three lineages. D. polychaeta, D. iri, and D. fraburu are branched together and constitute the most ancient lineage; the second lineage includes the annulimana, bromeliae, dreyfusi, melanica, mesophragmatica, repleta, robusta, and virilis groups. The third lineage is composed of the immigrans and the cardini, funebris, guaramunu, guarani, histrio, pallidipennis, quinaria, and tripunctata groups. The genera Samoaia, Scaptomyza, and Zaprionus are branched within the Drosophila clade. Although these four clades appear regularly in almost all tree calculations, additional sequencing will be necessary to determine their precise relationships.Correspondence to: M. Pelandakis  相似文献   

20.
Phylogenetic relationships among chain-forming Cochlodinium species, including the harmful red tide forming dinoflagellate Cochlodinium polykrikoides, were investigated using specimens collected from coastal waters of Canada, Hong Kong, Japan, Korea, Malaysia, México, Philippines, Puerto Rico, and USA. The phylogenetic tree inferred from partial (D1–D6 regions) large subunit ribosomal RNA gene (LSU rDNA) sequences clearly differentiated between C. polykrikoides and a recently described species, Cochlodinium fulvescens. Two samples collected from the Pacific coasts of North America (British Columbia, Canada and California, USA) having typical morphological characters of C. fulvescens such as the sulcus located in the intermediate region of the cingulum, were closely related to C. fulvescens from western Japan in the phylogenetic tree. Cochlodinium polykrikoides formed a monophyletic group positioned as a sister group of the C. fulvescens clade with three well-supported sub-clades. These three clades were composed of (1) East Asian, including specimens collected from Hong Kong, western Japan, and southern Korea, (2) Philippines, from Manila Bay, Philippines and Omura Bay, Japan, and (3) American/Malaysian, from the Atlantic coasts of USA, the Pacific coast of México, Puerto Rico, and Borneo Island, Malaysia. Each of these clades is considered to be a so-called “ribotype” representing the population inhabiting each region, which is distinguished based on ribosomal RNA gene sequences in the species despite similarities in their morphological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号