首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability.

Methods and Results

To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture‐based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple‐metal resistant, with 15% exhibiting dual‐metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, < 0·05) between multiple‐metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0–20 m) and middle (20–40 m) tailings zones being highly significant (< 0·01) from the lower zone (40–60 m) and the difference in diversity of the upper and middle tailings zone being significant (< 0·05). Phylotypes closely related to well‐known sulfate‐reducing and iron‐reducing bacteria were identified with low abundance, yet relatively high diversity.

Conclusions

The presence of a population of metabolically‐diverse, metal‐resistant micro‐organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long‐term geochemistry of the tailings.

Significance and Impact of the study

This study is the first investigation of the diversity and functional potential of micro‐organisms present in low permeability, high pH uranium mine tailings.  相似文献   

2.
The long-term stability of immobilized elements of concern in uranium tailings deposited in the Deilmann Tailings Management Facility (DTMF), northern Saskatchewan, is dependent upon maintenance of highly oxic conditions within the tailings mass. The main objective of this study was to investigate the effect of stimulating microbial activity on the redox potential and state of ferrihydrite, which are considered to be the primary controlling condition and mineral phase, respectively, within the tailings. To determine the potential for biologically mediated decreases in redox potential and ferrihydrite reduction, a series of microcosm assays were performed. Non-sterile material from the tailings–water interface of the DTMF site was inoculated with indigenous flora previously isolated from the tailings material and enriched with a carbon source (50 ppm trypticase soy broth) and incubated under continuous-flow or intermittent-flow conditions, and compared with an uninoculated, no-carbon control that received continuous flow. Highly reducing conditions with redox potentials of less than ?300 mV were detected after 2 days of incubation within the carbon-enriched tailings of microcosms receiving continuous flow, and less than ?280 mV after 11 days of incubation within carbon-enriched tailings in microcosms receiving intermittent flow. The lowest recorded Eh value (?545 mV) was recorded after 14 days in a carbon-enriched microcosm receiving intermittent flow. In contrast, the redox conditions in the control microcosm never dropped below ?93 mV; thus, it was clear that microbial activity and available carbon drove the Eh conditions to become highly reducing. The occurrence of low redox conditions was concomitant with the bulk chemical detection of Fe (II) in the effluent of treated microcosms. Sites of microbial ferrihydrite reduction were also detected using scanning transmission X-ray microscopy where Fe (II) species were observed in close proximity with bacterial cells. Analysis of the microbial diversity present within the microcosms confirmed that microbes indigenous to the DTMF system have the potential to generate conditions suitable for the proliferation of sulfate and iron reducing bacteria, such as Desulfosporosinus, which was detected by high-throughput 16S rRNA gene sequencing.  相似文献   

3.
Bacterial diversity was assessed in water samples collected from several uranium mining wastes in Ger many and in the United States by using 16S rDNA and ribosomal intergenic spacer amplification retrievals. The results obtained using the 16S rDNA retrieval showed that the samples collected from the uranium mill tailings of Schlema/Alberoda, Germany, were predominated by Nitrospina-like bacteria, whereas those from the mill tailings of Shiprock, New Mexico, USA, were predominated by gamma-Pseudomonas and Frauteria spp. Additional smaller populations of the Cytophaga-Flavobacterium-Bacteroides group and alpha- and delta-Proteobacteria were identified in the Shiprock samples as well. Proteobacteria and Cytophaga-Flavobacterium-Bacteroides were also found in the third uranium mill tailings studied, Gittersee/Coschütz, Germany, but the groups of the predominant clones were rather small. Most of the clones of the Gittersee/Coschütz samples represented individual sequences, which indicates a high level of bacterial diversity. The samples from the fourth uranium waste studied, Steinsee Deponie B1, Germany, were predominantly occupied by Acinetobacter spp. The ribosomal intergenic spacer amplification retrieval provided results complementary to those obtained by the 16S rDNA analyses. For instance, in the Shiprock samples, an additional predominant bacterial group was identified and affiliated with Nitrosomonas sp., whereas in the Gittersee/Coschütz samples, anammox populations were identified that were not retrieved by the applied 16S rDNA approach.  相似文献   

4.
To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (E(h)) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.  相似文献   

5.
The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.  相似文献   

6.
The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.  相似文献   

7.
A field-scale experiment was conducted to evaluate organic carbon amendment of mine tailings as a technique for pore water and drainage treatment. Six test cells were constructed by amending sulfide- and carbonate- rich tailings with varied mixtures of peat, spent-brewing grain and municipal biosolids. Samples were collected for microbial, geochemical and mineralogical analysis approximately three years after commencing this experiment. Test cells amended with spent-brewing grain promoted sulfate reduction and effective removal of sulfate and metal(loid)s. The addition of municipal biosolids did not sustain enhanced sulfidogenesis after three years, and peat was an ineffective source of organic carbon. Terminal-restriction fragment length polymorphism revealed that test cells which supported sulfidogenesis exhibited the greatest microbial diversity. Indigenous bacteria identified using molecular and cultivation analyses were found to be related to Cellulomonas, Thiobacillus, Bacteroides, Paludibacter and Desulfovibrio, which was the only sulfate-reducing bacterial (SRB) isolated. The results demonstrate that mixtures of solid organic materials which supported complex anaerobic microbial communities, including sulfate- reducing bacteria, were most effective in promoting pore-water treatment.  相似文献   

8.
Microbiological analyses were conducted on core samples collected along a vertical profile (0-66 m below surface) from the tailings management facility (TMF) at the Rabbit Lake uranium mine in northern Saskatchewan, Canada. Bacterial numbers in the core materials were similar to surrounding soils and surface waters, regardless of the seemingly unfavorable pH (mean=9.9) and temperature (approximately 0 degrees C) in the TMF. The greatest number of viable cells (105 CFU/g) was detected at the interface between the tailings and overlying standing water, below which cell counts decreased rapidly with depth. Whole-community metabolic profiles for samples from the different depths grouped into 3 clusters; however, these groups could not be positively correlated with sampling depth, temperature, redox potential, pH, or ore-mill feed. Flow-cell studies demonstrated microbial communities in the tailings surface water could develop biofilms and maintain cell activity at both pH 10 and 7, and altering the pH between these 2 values had little effect on biofilm viability. These results demonstrate the resilience and adaptive nature of naturally occurring microbial communities and signify a potential role of microbial activity in the long-term geochemical evolution of the TMF.  相似文献   

9.
Research at the Key Lake uranium mill (Saskatchewan, Canada) suggests effluent discharged from the mill affects energy stores of resident fish, but the mechanisms by which energy homeostasis is affected and the subsequent effects on swimming performance are unknown. In the present study larvae were collected from laboratory raised adult fathead minnow (Pimephales promelas) exposed to 5% diluted uranium mill effluent or control (dechlorinated municipal) water, and reared in the same treatments to 60 days post hatch (dph). Critical swimming speed (Ucrit) was significantly lower in effluent exposed 60 dph fish compared to control fish. Fish used in tests were considered fatigued and compared to fish without swim testing (non-fatigued). There were no differences in whole body glycogen or triglyceride concentrations between effluent exposed versus control fish. However, fatigued fish from both treatments had significantly lower triglycerides, but not glycogen, compared to non-fatigued fish from the same treatment. Whole body β–hydroxyacyl coenzymeA dehydrogenase activity was similar in fish from both treatments, but citrate synthase activity was significantly lower in effluent exposed fish. Our results suggest uranium mill effluent exposure in the laboratory affects aerobic energy metabolism and swimming performance in juvenile fathead minnow, which could affect wild fish survivability.  相似文献   

10.
Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from δ-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within δ-Proteobacteria were mainly recovered from low-uranium (≤302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research.  相似文献   

11.
Selective accumulation of heavy metals by microorganisms   总被引:3,自引:0,他引:3  
Summary An investigation of the removal and recovery of urnnium from aqueous systems using microbial biomass has been described previously (Nakajima et al. 1982). To establish which microorganisms accumulate the most uranium, we extended our investigation of uranium uptake to 83 species of microorganisms, 32 bacteria, 15 yeasts, 16 fungi and 20 actinomycetes. Of these 83 species of microorganisms tested, extremely high uranium-absorbing ability was found in Pseudomonas stutzeri, Neurospora sitophila, Streptomyces albus and Streptomyces viridochromogenes.The selective accumulation of heavy metal ions by various microorganisms has also been examined. Uranyl, mercury and lead ions were readily accumulated by almost all the species of microorganisms tested. Actinomycetes and fungi differ from many bacteria and most yeasts in their selective accumulation of uranium and mercury.In addition to this fundamental research, uranium recovery was investigated in immobilized Streptomyces albus, a microorganism with high uranium-uptake ability. These immobilized cells adsorbed uranium readily and selectively. The immobilized cells recovered uranium almost quantitatively and almost all uranium absorbed was desorbed with 0.1 M Na2CO3. The dry weight of the free cells decreased by 50% during 5 adsorption-desorption cycles. However, the dry weight of the immobilized cells decreased by only 2% during 5 cycles. These results showed that microbial cells are more stable after immobilization and can be used repeatedly for the process of uranium adsorption-desorption.  相似文献   

12.
Li  Yang  Sun  Qingye  Zhan  Jing  Yang  Yang  Wang  Dan 《Applied microbiology and biotechnology》2017,101(6):2549-2561

Native soil amendment has been widely used to stabilize mine tailings and speed up the development of soil biogeochemical functions before revegetation; however, it remains poorly understood about the response of microbial communities to ecological restoration of mine tailings with soil-covered strategy. In this study, microbial communities along a 60-cm profile were investigated in mine tailings during ecological restoration of two revegetation strategies (directly revegetation and native soil covered) with different plant species. The mine tailings were covered by native soils as thick as 40 cm for more than 10 years, and the total nitrogen, total organic carbon, water content, and heavy metal (Fe, Cu, and Zn) contents in the 0–40 cm intervals of profiles were changed. In addition, increased microbial diversity and changed microbial community structure were also found in the 10–40 cm intervals of profiles in soil-covered area. Soil-covered strategy rather than plant species and soil depth was the main factor influencing the bacterial community, which explained the largest portion (29.96%) of the observed variation. Compared directly to revegetation, soil-covered strategy exhibited the higher relative abundance of Acidobacteria and Deltaproteobacteria and the lower relative abundance of Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Gammaproteobacteria. PICRUSt analysis further demonstrated that soil-covered caused energy metabolic functional changes in carbon, nitrogen, and sulfur metabolism. Given all these, the soil-covered strategy may be used to fast-track the establishment of native microbial communities and is conducive to the rehabilitation of biogeochemical processes for establishing native plant species.

  相似文献   

13.
Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from delta-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within delta-Proteobacteria were mainly recovered from low-uranium (< or =302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research.  相似文献   

14.
The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 109 cells g−1 dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.  相似文献   

15.
Two bacterial consortia were developed by continuous enrichment of microbial population of tannery and pulp and paper mill effluent contained Serratia mercascens, Pseudomonas fluorescence, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter sp. identified by 16S rDNA method. The consortia evaluated for removal of chromate [(Cr(VI)] in shake flask culture indicated pulp and paper mill consortium had more potential for removal of chromate. Acinetobacter sp. isolated from pulp and paper mill consortium removed higher amount of chromate [Cr(VI)] under aerobic conditions. Parameters optimized in different carbon, nitrogen sources, and pH, indicated maximum removal of chromate in sodium acetate (0.2%), sodium nitrate (0.1%) and pH 7 by Acinetobacter sp. Bacteria was applied in 2-l bioreactor significantly removed chromate after 3 days. The results of the study indicated removal of more than 75% chromium by Acinetobacter sp. determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometer after 7 days. Study of microbial [Cr(VI)] removal and identification of reduction intermediates has been hindered by the lack of analytical techniques. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) which indicated bioaccumulation of chromium in the bacterial cells.  相似文献   

16.
The Lemoine tailings of Chibougamau, Quebec, Canada, were deposited as a pH-neutral mineral conglomerate consisting of aluminum-silicates, iron-aluminum-silicates, pyrite, chalcopyrite, and sphalerite. These tailings are colonized by an active population of Thiobacillus ferrooxidans which is localized to an acid zone occupying 40% of the tailings' surface. This population peaked at 7 × 108 most probable number per gram of tailings during July and August 1990 and extended to a depth of 40 cm from the surface. Examination of samples over this depth profile by transmission electron microscopy and electron dispersive spectroscopy revealed a microbially mediated mineral transition from sulfides (below 40 cm) to chlorides and phosphates (at the surface). Silicate minerals were unaltered by microbial action. Transmission electron microscopy showed a tight association between Thiobacillus species and the sulfide minerals, which helps account for their prominence in tailings environments. Accurate enumeration of T. ferrooxidans from tailings required the disruption of their bonding to the mineral interface. Vortexing of a 10% aqueous suspension of the tailings material prior to most-probable-number analysis best facilitated this release. Even though heavy metals were highly mobile under acidic conditions at the Lemoine tailings, it was evident by transmission electron microscopy and electron dispersive spectroscopy that they were being immobilized as bona fide fine-grain minerals containing iron, copper, chlorine, phosphorus, and oxygen on bacterial surfaces and exopolymers. This biomineralization increased with increasing bacterial numbers and was most evident in the upper 3 cm of the acidic zone.  相似文献   

17.
Aim: To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell. Methods and Results: Microbial fuel cells enriched with palm oil mill effluent (POME) were employed to harvest bioenergy from both artificial wastewater containing acetate and complex POME. The microbial fuel cell (MFC) showed maximum power density of 3004 mW m?2 after continuous feeding with artificial wastewater containing acetate substrate. Subsequent replacement of the acetate substrate with complex substrate of POME recorded maximum power density of 622 mW m?2. Based on 16S rDNA analyses, relatively higher abundance of Deltaproteobacteria (88·5%) was detected in the MFCs fed with acetate artificial wastewater as compared to POME. Meanwhile, members of Gammaproteobacteria, Epsilonproteobacteria and Betaproteobacteria codominated the microbial consortium of the MFC fed with POME with 21, 20 and 18·5% abundances, respectively. Conclusions: Enriched electrochemically active bacteria originated from POME demonstrated potential to generate bioenergy from both acetate and complex POME substrates. Further improvements including the development of MFC systems that are able to utilize both fermentative and nonfermentative substrates in POME are needed to maximize the bioenergy generation. Significance and Impact of the Study: A better understanding of microbial structure is critical for bioenergy generation from POME using MFC. Data obtained in this study improve our understanding of microbial community structure in conversion of POME to electricity.  相似文献   

18.
Summary The feasibility of bacterial recovery of uranium from the low grade black schists occurring in the Okcheon district, South Korea, was investigated. Following the introduction of Acidithiobacillus ferrooxidans, 80% of the uranium could be extracted from the schists, which contain 0.01% U3O8 by weight, within 60 h at a pulp density of 100 g-ore/l. Only 18% of the uranium was extracted without microbial activity. The uranium-leaching efficiency was not greatly affected by the addition of Fe2+ in the range of 5–9 g/l, and the leaching efficiency of uranium from the schists by A. ferrooxidanscould be efficiently maintained at high pulp densities (up to 500 g-ore/l).  相似文献   

19.
Summary Paecilomyces sp. and Pseudomonas syringae pv myricae (CSA105) were isolated from sediment core of drainage of the pulp and paper mill industry. Fungi and bacteria were applied for treatment of pulp and paper mill effluent in a two-step and three-step fixed film sequential bioreactor containing sand and gravel at the bottom of the reactor for immobilization of microbial cells. Degradation of chlorinated phenols and formation of their metabolites were determined by high performance liquid chromatography. The microbes exhibited significant reduction in colour (88.5%), lignin (79.5%), chemical oxygen demand (87.2%) and phenol (87.7%) in two-step aerobic sequential bioreactor, and colour (87.7%), lignin (76.5%), chemical oxygen demand (83.9%) and phenol (87.2%) in three-step anaerobic-aerobic sequential bioreactor.  相似文献   

20.
The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) 'oxidation zone' characterized by low-pH (2.5-4), a 'neutralization zone' (70-80 to 300-400 cm) and an unaltered 'primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号