首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li XD  Saito J  Ikebe R  Mabuchi K  Ikebe M 《Biochemistry》2000,39(9):2254-2260
Recent findings have suggested that the interaction between the two heads is critical for phosphorylation-dependent regulation of smooth muscle myosin. We hypothesized that the interaction between the two regulatory light chains on two heads of myosin dictates the regulation of myosin motor function. To evaluate this notion, we engineered and characterized smooth muscle heavy meromyosin (HMM), which is composed of one entire HMM heavy chain and one motor domain truncated heavy chain containing the S2 rod and regulatory light chain (RLC) binding site, as well as the bound RLC (SMDHMM). SMDHMM was inactive for both actin-translocating activity and actin-activated ATPase activity in the dephosphorylated state, demonstrating that the interaction between the two RLC domains on the two heads and/or a motor domain and a RLC domain in a distinct head is sufficient for the inhibition of smooth muscle myosin motor activity. When phosphorylated, SMDHMM was activated for both actin-translocating activity and actin-activated ATPase activity; however, these activities were lower than those of double-headed HMM, implying partial release of inhibition by phosphorylation in SMDHMM and/or cooperativity between the two heads of smooth muscle myosin. The present results indicate that the RLC domain is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. On the other hand, similar to double-headed HMM, SMDHMM showed both "folded" and "extended" conformations, and the ratio of those conformations is dependent on ionic strength, suggesting that the RLC domain is sufficient to regulate the conformational transition in myosin.  相似文献   

2.
Previous studies indicated that single-headed smooth muscle myosin and S1 (a single head fragment) are not regulated through phosphorylation of the regulatory light chain (RLC). To investigate the importance of the double-headedness of myosin and of the S2 region for the phosphorylation-dependent regulation, we made three types of recombinant mutant smooth muscle HMMs with one intact head and an N-terminally truncated head. The truncated head of Delta MD lacked the motor domain, that of Delta(MD+ELC) lacked the motor and essential light chain binding domains, and single-headed HMM had one intact head alone. The basal ATPase activities of the three mutants decreased as the KCl concentration became less than 0.1 M. Such a decrease was not observed for S1, which had no S2 region, suggesting that S2 is necessary for this myosin behavior. This activity decrease also disappeared when RLCs of Delta MD and Delta(MD+ELC), but that of single-headed HMM, were phosphorylated. When their RLCs were unphosphorylated, the three mutants exhibited similar actin-activated ATPase levels. However, when they were phosphorylated, the actin-activated ATPase activities of Delta MD and Delta(MD+ELC) increased to the S1 level, while that of single-headed HMM remained unchanged. Even in the phosphorylated state, the actin-activated ATPase activities of the three mutants and S1 were much lower than that of wild-type HMM. We propose that S2 has an inhibitory function that is canceled by an interaction between two phosphorylated RLCs. We also propose that a cooperative interaction between two motor domains is required for a higher level of actin activation.  相似文献   

3.
In vertebrate smooth/non-muscle myosins, phosphorylation of the regulatory light chains by a specific calmodulin-activated kinase controls both myosin head interaction with actin and assembly of the myosin into filaments. Previous studies have shown that the C-terminal domain of the regulatory light chain is crucial for the regulation of these myosin functions. To further dissect the role of this region of the light chain in myosin regulation, a series of chicken smooth muscle myosin regulatory light chain mutants has been constructed with successive C-terminal deletions. These mutants were synthesized in Escherichia coli and analysed by their ability to restore Ca2+ regulation to scallop myosin that had been stripped of its native regulatory light chains ('desensitized'). The results show that regulatory light chain mutants with deletions in the C-terminal helix in subdomain 4 were able to reform the regulatory Ca2+ binding site on the scallop myosin head, but had lost the ability to suppress scallop myosin filament assembly and interaction with actin in the absence of Ca2+. Further deletions in the C-terminal domain led to a gradual loss of ability to restore the regulatory Ca2+ binding site. Thus, the regions in the C-terminal half of the regulatory light chain responsible for myosin regulation can be identified.  相似文献   

4.
Molluscan myosins are regulated molecules that control muscle contraction by the selective binding of calcium. The essential and the regulatory light chains are regulatory subunits. Scallop myosin is the favorite material for studying the interactions of the light chains with the myosin heavy chain since the regulatory light chains can be reversibly removed from it and its essential light chains can be exchanged. Mutational and structural studies show that the essential light chain binds calcium provided that the Ca-binding loop is stabilized by specific interactions with the regulatory light chain and the heavy chain. The regulatory light chains are inhibitory subunits. Regulation requires the presence of both myosin heads and an intact headrod junction. Heavy meromyosin is regulated and shows cooperative features of activation while subfragment-1 is non-cooperative. The myosin heavy chains of the functionally different phasic striated and the smooth catch muscle myosins are products of a single gene, the isoforms arise from alternative splicing. The differences between residues of the isoforms are clustered at surface loop-1 of the heavy chain and account for the different ATPase activity of the two muscle types. Catch muscles contain two regulatory light chain isoforms, one phosphorylatable by gizzard myosin light chain kinase. Phosphorylation of the light chain does not alter ATPase activity. We could not find evidence that light chain phosphorylation is responsible for the catch state.  相似文献   

5.
Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament.  相似文献   

6.
M Ikebe  M Yamada  K Mabuchi  T Kambara  R Ikebe 《Biochemistry》1999,38(33):10768-10774
A recent report has suggested that the interaction between the head and the rod region of smooth muscle myosin at S2 is important for the phosphorylation-mediated regulation of myosin motor activity [Trybus, K. M., Freyzon, Y., Faust, L. Z., and Sweeney, H. L. (1997) Proc. Natl. Acad. Sci. U.S.A. 74, 48-52]. To investigate whether specific amino acid residues at S2 or whether the registration of the 7-residue/28-residue repeat appearing in the alpha-helical coiled-coil structure of the rod are critical for such an interaction, two smooth muscle myosin mutants were constructed in which the N-terminal sequences of S2 were deleted to various extents. One mutant contained a deletion of 71 residues at the position immediately C-terminal to the invariant proline (Pro849) linking the S1 domain directly to the downstream sequence of the rod, while in another mutant, 53 residues were deleted at a position 56 residues downstream of Pro849. Despite these alterations which change the registration of both the 28-residue repeat and the 7-residue repeat found in myosin rod sequence, both myosin mutants showed a stable double-headed structure by electron microscopic observation. Both the actin-activated ATPase activity and the actin translocating activity of the mutants were completely regulated by the phosphorylation of the regulatory light chain. The actin sliding velocity of the two mutant myosins was the same as the wild-type recombinant myosin. Furthermore, the head configuration critical for myosin filament formation (extended or folded) was unchanged in either mutant. These results indicate that neither the specific amino acid residues nor the registration of the amino acid repeat in S2 is critical for the head configuration. These results indicate that neither a specific amino acid sequence at the head-rod junction nor the rod sequence registration is critical for the regulation of smooth muscle myosin.  相似文献   

7.
The actin-activated ATPase activity of smooth muscle myosin and heavy meromyosin (smHMM) is regulated by phosphorylation of the regulatory light chain (RLC). Complete regulation requires two intact myosin heads because single-headed myosin subfragments are always active. 2D crystalline arrays of the 10S form of intact myosin, which has a dephosphorylated RLC, were produced on a positively charged lipid monolayer and imaged in 3D at 2.0 nm resolution by cryo-electron microscopy of frozen, hydrated specimens. An atomic model of smooth muscle myosin was constructed from the X-ray structures of the smooth muscle myosin motor domain and essential light chain and a homology model of the RLC was produced based on the skeletal muscle S1 structure. The initial model of the 10S myosin, based on the previous reconstruction of smHMM, was subjected to real space refinement to obtain a quantitative fit to the density. The smHMM was likewise refined and both refined models reveal the same asymmetric interaction between the upper 50 kDa domain of the "blocked" head and parts of the catalytic, converter domains and the essential light chain of the "free" head observed previously. This observation suggests that this interaction is not simply due to crystallographic packing but is enforced by elements of the myosin heads. The 10S reconstruction shows additional alpha-helical coiled-coil not seen in the earlier smHMM reconstruction, but the location of one segment of S2 is the same in both.  相似文献   

8.
De La Cruz EM  Wells AL  Sweeney HL  Ostap EM 《Biochemistry》2000,39(46):14196-14202
Recent studies on myosin V report a number of kinetic differences that may be attributed to the different heavy chain (chicken vs mouse) and light chain (essential light chains vs calmodulin) isoforms used. Understanding the extent to which individual light chain isoforms contribute to the kinetic behavior of myosin V is of critical importance, since it is unclear which light chains are bound to myosin V in cells. In addition, all studies to date have used alpha-skeletal muscle actin, whereas myosin V is in nonmuscle cells expressing beta- and gamma-actin. Therefore, we characterized the actin and light chain dependence of single-headed myosin V kinetics. The maximum actin-activated steady-state ATPase rate (V(max)) of a myosin V construct consisting of the motor domain and first light chain binding domain is the same when either of two essential light chain isoforms or calmodulin is bound. However, with bound calmodulin, the K(ATPase) is significantly higher and there is a reduction in the rate and equilibrium constants for ATP hydrolysis, indicating that the essential light chain favors formation of the M. ADP.P(i) state. No kinetic parameters of myosin V are strongly influenced by the actin isoform. ADP release from the actin-myosin complex is the rate-limiting step in the ATPase cycle with all actin and light chain isoforms. We postulate that although there are significant light-chain-dependent alterations in the kinetics that could affect myosin V processivity in in vitro assays, these differences likely are minimized under physiological conditions.  相似文献   

9.
The effects of myosin regulatory light chain (RLC) phosphorylation and strain on adenosine diphosphate (ADP) release from cross-bridges in phasic (rabbit bladder (Rbl)) and tonic (femoral artery (Rfa)) smooth muscle were determined by monitoring fluorescence transients of the novel ADP analog, 3'-deac-eda-ADP (deac-edaADP). Fluorescence transients reporting release of 3'-deac-eda-ADP were significantly faster in phasic (0.57 +/- 0.06 s(-1)) than tonic (0.29 +/- 0.03 s(-1)) smooth muscles. Thiophosphorylation of regulatory light chains increased and strain decreased the release rate approximately twofold. The calculated (k-ADP/k+ADP) dissociation constant, Kd of unstrained, unphosphorylated cross-bridges for ADP was 0.6 microM for rabbit bladder and 0.3 microM for femoral artery. The rates of ADP release from rigor bridges and reported values of Pi release (corresponding to the steady-state adenosine triphosphatase (ATPase) rate of actomyosin (AM)) from cross-bridges during a maintained isometric contraction are similar, indicating that the ADP-release step or an isomerization preceding it may be limiting the adenosine triphosphatase rate. We conclude that the strain- and dephosphorylation-dependent high affinity for and slow ADP release from smooth muscle myosin prolongs the fraction of the duty cycle occupied by strongly bound actomyosin.ADP state(s) and contributes to the high economy of force.  相似文献   

10.
The amino acid structure of regulatory light chain which is essential to express the phosphorylation-mediated regulation of smooth muscle actomyosin ATPase was studied. Regulatory light chain of smooth muscle heavy meromyosin (HMM) was truncated by either lysylendopeptidase or trypsin. Lysylendopeptidase cleaved the regulatory light chain initially at the C-terminal side of lysine 6 (Lys C(1)-HMM) and subsequently at the C-terminal side of lysine 12 (Lys C(2)-HMM). On the other hand, trypsin cleaved at the C-terminal side of arginine 16 (tryp-HMM). While the actin activated ATPase activity of Lys C(1)-HMM and Lys C(2)-HMM was markedly activated by phosphorylation, that of tryp-HMM was not activated by phosphorylation. The exchange of cleaved regulatory light chain of tryp-HMM with undigested regulatory light chain restored the phosphorylation-mediated regulation on the actin activated ATPase activity. The regulatory light chain of the undigested HMM was also exchanged with the trypsin-digested regulatory light chain and this abolished the phosphorylation dependence of acto-HMM ATPase activity. These results show that the amino acid sequence arginine 13-arginine 16 is essential to express the regulation of actin activated ATPase of smooth muscle myosin which is mediated by the phosphorylation at serine 19 of the regulatory light chain.  相似文献   

11.
Smooth muscle myosin and smooth muscle heavy meromyosin (smHMM) are activated by regulatory light chain phosphorylation, but the mechanism remains unclear. Dephosphorylated, inactive smHMM assumes a closed conformation with asymmetric intramolecular head-head interactions between motor domains. The "free head" can bind to actin, but the actin binding interface of the "blocked head" is involved in interactions with the free head. We report here a three-dimensional structure for phosphorylated, active smHMM obtained using electron crystallography of two-dimensional arrays. Head-head interactions of phosphorylated smHMM resemble those found in the dephosphorylated state but occur between different molecules, not within the same molecule. The light chain binding domain structure of phosphorylated smHMM differs markedly from that of the "blocked" head of dephosphorylated smHMM. We hypothesize that regulatory light chain phosphorylation opens the inhibited conformation primarily by its effect on the blocked head. Singly phosphorylated smHMM is not compatible with the closed conformation if the blocked head is phosphorylated. This concept has implications for the extent of myosin activation at low levels of phosphorylation in smooth muscle.  相似文献   

12.
The activity of smooth and non-muscle myosin II is regulated by phosphorylation of the regulatory light chain (RLC) at serine 19. The dephosphorylated state of full-length monomeric myosin is characterized by an asymmetric intramolecular head–head interaction that completely inhibits the ATPase activity, accompanied by a hairpin fold of the tail, which prevents filament assembly. Phosphorylation of serine 19 disrupts these head–head interactions by an unknown mechanism. Computational modeling (Tama et al., 2005. J. Mol. Biol. 345, 837–854) suggested that formation of the inhibited state is characterized by both torsional and bending motions about the myosin heavy chain (HC) at a location between the RLC and the essential light chain (ELC). Therefore, altering relative motions between the ELC and the RLC at this locus might disrupt the inhibited state. Based on this hypothesis we have derived an atomic model for the phosphorylated state of the smooth muscle myosin light chain domain (LCD). This model predicts a set of specific interactions between the N-terminal residues of the RLC with both the myosin HC and the ELC. Site directed mutagenesis was used to show that interactions between the phosphorylated N-terminus of the RLC and helix-A of the ELC are required for phosphorylation to activate smooth muscle myosin.  相似文献   

13.
To understand the domain requirements of phosphorylation-dependent regulation, we prepared three recombinant constructs of nonmuscle heavy meromyosin IIB containing 1) two complete heads, 2) one complete head and one head lacking the motor domain, and 3) one complete head and one head lacking both motor and regulatory domains. Steady-state ATPase measurements showed that phosphorylation did not alter the affinity for actin by more than a factor of 2 for any construct. Phosphorylation increased V(max) by a factor of 10 for construct 1 and 1.5-3 for construct 2 but had no effect for construct 3. Single turnover measurements, a better measure of slow rates inherent to unphosphorylated regulated myosins, showed that the single-headed construct 2, like construct 3 retains less than 1% of the regulatory properties of the double-headed construct 1 (300-fold activation). Therefore, a complete head cannot be down-regulated by a regulatory domain (without the motor domain) on the partner head. Two motor domains are required for regulation. This result is predicted by a structural model (Wendt, T., Taylor, D., Messier, T., Trybus, K. M., and Taylor, K. A. (1999) J. Cell Biol. 147, 1385-1390) showing interaction between the motor domains for unphosphorylated smooth muscle myosin, if motor-motor interaction is the basis for down-regulation.  相似文献   

14.
Like other vertebrate nonmuscle myosins, thymus myosin contains two phosphorylatable light chains. Phosphorylation of these light chains regulates the actin-activated ATPase of this myosin. The time courses for the phosphorylation of both monomeric and filamentous thymus myosin by gizzard myosin light chain kinase fitted single exponentials to greater than 85% phosphorylation. This indicates that the two heads of thymus myosin are phosphorylated at the same rate and suggests that these phosphorylations are random processes. The actin-activated ATPases of thymus myosins with different levels of light chain phosphorylation were also determined. A linear relationship was obtained between the extent of light chain phosphorylation and stimulation of the actin-activated ATPase. Since thymus myosin appears to be phosphorylated randomly, this linear relationship indicates that phosphorylation of one head of thymus myosin stimulates the actin-activated ATPase of that head independently of the phosphorylation of the second head. The apparent random phosphorylation of thymus myosin light chains contrasts with the reported ordered phosphorylation of the light chains of filamentous smooth (gizzard) muscle myosin. Also, while the actin-activated ATPases of the two heads of thymus myosin are regulated independently, both heads of gizzard myosin must be phosphorylated before the ATPase of either head is activated by actin.  相似文献   

15.
To examine the functional role of the essential light chain (ELC) in the phosphorylation-dependent regulation of smooth muscle myosin, we replace the native light chain in smooth muscle myosin with bacterially expressed chimeric ELCs in which one or two of the four helix-loop-helix domains of chicken gizzard ELC were substituted by the corresponding domains of scallop (Aquipecten irradians) ELC. All of these myosins, regardless of the ELC mutations or regulatory light chain (RLC) phosphorylation, showed normal subunit constitutions and NH(4)(+)/EDTA-ATPase activities, both of which were similar to those of native myosin. None of the ELC mutations changed the actin-activated ATPase activity of myosin in the absence of RLC phosphorylation. However, in the presence of RLC phosphorylation, the substitution of domain 1 or 2 in the ELC significantly decreased the actin-activated ATPase activity, whereas the substitution of both of these domains did not change the activity. In contrast to myosin, the domain 2 substitution in the ELC did not affect the actin-activated ATPase activity of single-headed myosin subfragment 1. These results suggest an interhead interaction between domains 1 and 2 of ELCs which is required to attain the full actin-activated ATPase activity of smooth muscle myosin in the presence of RLC phosphorylation.  相似文献   

16.
Regulatory light chains, located on the 'motor' head domains of myosin, belong to the family of Ca2+ binding proteins that consist of four 'EF-hand' subdomains. Vertebrate regulatory light chains can be divided into two functional classes: (i) in smooth/non-muscle myosins, phosphorylation of the light chains by a calcium/calmodulin-dependent kinase regulates both interaction of the myosin head with actin and assembly of the myosin into filaments, (ii) the light chains of skeletal muscle myosins are similarly phosphorylated, but they play no apparent role in regulation. To discover the basis for the difference in regulatory properties of these two classes of light chains, we have synthesized in Escherichia coli, chimeric mutants composed of subdomains derived from the regulatory light chains of chicken skeletal and smooth muscle myosins. The regulatory capability of these mutants was analysed by their ability to regulate molluscan myosin. Using this test system, we identified the third subdomain of the regulatory light chain as being responsible for controlling not only the actin-myosin interaction, but also myosin filament assembly.  相似文献   

17.
Regulatory light chain-a myosin kinase (aMK), which phosphorylates one of the myosin regulatory light chains, RLC-a, contained in the catch muscle of scallop, was also found to phosphorylate heavy chains of scallop myosin. After incubation of myosin isolated from the opaque portion of scallop smooth muscle (opaque myosin) with aMK in the presence of [gamma-32P]ATP, about 2 mol of 32P was incorporated per mol of the myosin. The radioactivity was mostly found in the heavy chain at 0.26 M KCl. The pH-activity curve and MgCl2 requirement for the heavy chain phosphorylation were similar to those for RLC-a phosphorylation. In contrast, the dependency of activity on KCl concentration was different from that for RLC-a. The heavy chain phosphorylation activity decreased with increase in KCl concentration up to 0.06 M, and then increased at concentrations over 0.06 M to a maximum at around 0.26 M KCl. This complicated profile probably reflects the solubility of myosin, and the phosphorylation site may be located in the rod portion insoluble at low KCl concentrations. Phosphorylation of heavy chain did not change the solubility of the opaque myosin molecule at all. The acto-opaque myosin ATPase activity in the presence of Ca2+ was found to be decreased to less than one-fourth by the heavy chain phosphorylation.  相似文献   

18.
Scallop myosin molecules contain two moles of regulatory light chains and two moles of light chains with unknown function. Removal of one of the regulatory light chains by treatment with EDTA is accompanied by the complete loss of the calcium dependence of the actin-activated ATPase activity and by the loss of one of the two calcium binding sites on the intact molecule. Such desensitized preparations recombine with one mole of regulatory light chain and regain calcium regulation and calcium binding. The second regulatory light chain may be selectively obtained from EDTA-treated scallop muscles by treatment with the Ellman reagent (5,5′-dithiobis(2-nitrobenzoic acid)): treatment with this reagent, however, leads to an irreversible loss of ATPase activity. The light chains obtained by treatment with EDTA and then DTNB are identical in composition and function. A different light chain fraction obtained by subsequent treatment with guanidine-HCl does not bind to desensitized or intact myoflbrils and has no effect on ATPase activity.Regulatory light chains which bind to desensitized scallop myofibrils with high affinity and restore calcium control were found in a number of molluscan and vertebrate myosins, including Mercenaria, Spisula, squid, lobster tail, beef heart, chicken gizzard, frog and rabbit. Although these myosins all have a similar subunit structure and contain about two moles of regulatory light chain, only scallop myosin or myofibrils can be desensitized by treatment with EDTA.There appear to be two classes of regulatory light chains. The regulatory light chains of molluscs and of vertebrate smooth muscles restore full calcium binding and also resensitize purified scallop myosin. The regulatory light chains from vertebrate striated, cardiac, and the fast decapod muscles, on the other hand, have no effect on calcium binding and do not resensitize purified scallop myosin unless the myosin is complexed with actin. The latter class of light chains is found in muscles where in vitro functional tests failed to detect myosin-linked regulation.  相似文献   

19.
The interactions of smooth muscle myosin and its light chains have been examined by incubating sodium dodecyl sulfate-polyacrylamide gels of myosin with radioactively labeled regulatory or essential light chains. The technique involves sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fixation with methanol and acetic acid followed by an extensive series of washes. The gel is incubated overnight with labeled light chains in the presence of bovine serum albumin and then washed extensively to remove unbound protein. Following staining and destaining, the gel is autoradiographed to reveal which protein bands have bound light chain. The myosin heavy chain was able to rebind labeled regulatory or essential light chains despite the harsh procedure described above. By fragmenting the myosin heavy chain proteolytically, we were able to determine the binding site for both types of light chains to be within the 26,000-Da COOH-terminal segment of smooth muscle subfragment 1 (S-1) or the 20,000-Da COOH-terminal segment of skeletal muscle S-1. The extent of binding was 0.1-0.4 mol of light chain/mol of S-1 heavy chain. No binding was observed to portions of the myosin molecule which do not contain this segment such as myosin rod, light meromyosin, S-2, or the NH2-terminal 75,000-Da segment of S-1.  相似文献   

20.
Light chain phosphorylation is the key event that regulates smooth and non-muscle myosin II ATPase activity. Here we show that both heads of smooth muscle heavy meromyosin (HMM) bind tightly to actin in the absence of nucleotide, irrespective of the state of light chain phosphorylation. In striking contrast, only one of the two heads of unphosphorylated HMM binds to actin in the presence of ADP, and the heads have different affinities for ADP. This asymmetry suggests that phosphorylation alters the mechanical coupling between the heads of HMM. A model that incorporates strain between the two heads is proposed to explain the data, which have implications for how one head of a motor protein can gate the response of the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号