首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Maina JN 《Tissue & cell》2004,36(2):129-139
Formation of a thin blood-gas barrier in the respiratory (gas exchange) tissue of the lung of the domestic fowl, Gallus gallus variant domesticus commences on day 18 of embryogenesis. Developing from infundibulae, air capillaries radiate outwards into the surrounding mesenchymal (periparabronchial) tissue, progressively separating and interdigitating with the blood capillaries. Thinning of the blood-gas barrier occurs by growth and extension of the air capillaries and by extensive disintegration of mesenchymal cells that constitute transient septa that divide the lengthening and anastomosing air capillaries. After they contact, the epithelial and endothelial cells deposit intercellular matrix that cements them back-to-back. At hatching (day 21), with a thin blood-gas barrier and a large respiratory surface area, the lung is well prepared for gas exchange. In sites where air capillaries lie adjacent to each other, epithelial cells contact directly: intercellular matrix is lacking.  相似文献   

2.
The entire alveolar surface is lined by a thin fluid continuum. As a consequence, surface forces at the air-liquid interface are operative, which in part are transmitted to the delicate lung tissue. Morphologic and morphometric analyses of lungs show that the alveolar surface forces exert a moulding effect on alveolar tissue elements. In particular, in lungs at low degrees of inflation, equivalent to the volume range of normal breathing, there is a derecruitment of alveolar surface area with increasing surface tensions which reflects equilibrium configurations of peripheral air spaces where the sum of tissue energy and surface energy is minimum. Thus, changes in surface tension alter the recoil pressure of the lung directly and indirectly by deforming lung tissue and hence changing tissue tensions. However, the interplay between tissue and surface forces is rather complex, and there is a marked volume dependence of the shaping influence of surface forces. With increasing lung volumes the tissue forces transmitted by the fiber scaffold of the lung become the predominant factor of alveolar micromechanics: at lung volumes of 80% total lung capacity or more, the alveolar surface area-volume relation is largely independent of surface tension. Most important, within the range of normal breathing, the surface tension, its variations and the associated variations in surface area are small. The moulding power of surface forces also affects the configuration of capillaries, and hence the microcirculation, of free cellular elements such as the alveolar macrophages beneath the surface lining layer, and of the surfaces of the peripheral airways. Still enigmatic is the coupling mechanism between the fluid continua of alveoli and airways which might also be of importance for alveolar clearance. As to the surface active lining layer of peripheral air spaces, which determines alveolar surface tension, its structure and structure-function relationship are still ill-defined owing to persisting problems of film preservation and fixation. Electron micrographs of alveolar tissue, of lining layers of captive bubbles, and scanning force micrographs of surfactant films transferred on mica plates reveal a complex structural pattern which precludes so far the formulation of an unequivocal hypothesis.  相似文献   

3.
Stress failure in pulmonary capillaries   总被引:1,自引:0,他引:1  
In the mammalian lung, alveolar gas and blood are separated by an extremely thin membrane, despite the fact that mechanical failure could be catastrophic for gas exchange. We raised the pulmonary capillary pressure in anesthetized rabbits until stress failure occurred. At capillary transmural pressures greater than or equal to 40 mmHg, disruption of the capillary endothelium and alveolar epithelium was seen in some locations. The three principal forces acting on the capillary wall were analyzed. 1) Circumferential wall tension caused by the transmural pressure. This is approximately 25 dyn/cm (25 mN/m) at failure where the radius of curvature of the capillary is 5 microns. This tension is small, being comparable with the tension in the alveolar wall associated with lung elastic recoil. 2) Surface tension of the alveolar lining layer. This contributes support to the capillaries that bulge into the alveolar spaces at these high pressures. When protein leakage into the alveolar spaces occurs because of stress failure, the increase in surface tension caused by surfactant inhibition could be a powerful force preventing further failure. 3) Tension of the tissue elements in the alveolar wall associated with lung inflation. This may be negligible at normal lung volumes but considerable at high volumes. Whereas circumferential wall tension is low, capillary wall stress at failure is very high at approximately 8 x 10(5) dyn/cm2 (8 x 10(4) N/m2) where the thickness is only 0.3 microns. This is approximately the same as the wall stress of the normal aorta, which is predominantly composed of collagen and elastin. The strength of the thin part of the capillary wall is probably attributable to the collagen IV of the basement membranes. The safety factor is apparently small when the capillary pressure is raised during heavy exercise. Stress failure causes increased permeability with protein leakage, or frank hemorrhage, and probably has a role in several types of lung disease.  相似文献   

4.
Partial pressure of oxygen and carbon dioxide in alveolar air and arterial blood, lung diffusion capacity and its components, ventilation parameters, ventilation-perfusion ratio were determined in healthy people aged 60-89 (45 subjects) and aged 20-31 (19 subjects, controls). In elderly and old people PO2 in arterial blood was found to decrease with increasing alveolar-arterial PO2 gradient. In other words, arterial hypoxemia was determined by the disturbance in gas exchange between alveolar air and blood of lung capillaries. The diffusion capacity of lung decreased at the expense of membrane factor. Its age-related dynamics was mainly due to a decrease in the pulmonary diffusion surface occurring because of improper coordination of ventilation and perfusion in the lungs. The discrepancy of pulmonary ventilation and perfusion proved to be the leading factor of arterial hypoxemia in late ontogenesis.  相似文献   

5.
The lung of the slug Trichotoxon copleyi is located in the body mantle where it opens to the outside through an adjustable pneumostome situated on the right side. The respiratory surface of the lung is profusely vascularized by anastomosing 'blood' capillaries. A thick muscular layer surrounds the gas exchange surface and may be involved in the efficient rhythmic ventilatory contraction of the lung. Externally an epithelial layer made up of large secretory cells with numerous microvilli overlies the muscular layer. The surface of the lung is made up of squamous cells with an abundance of microvilli and clustered goblet cells interspersed occasionally. The squamous cells cover the notably thin air–blood barrier which is extremely attenuated, particularly in some areas. The goblet cells contain a centrally located nucleus and numerous intracytoplasmic granules, presumably precursors of the mucus that covers the surface of the mantle cavity.
All the essential morphological prerequisites for efficient gas exchange such as an extensive surface and a thin blood–gas barrier were observed in the lung of Trichotoxon. It was concluded that this molluscan lung is structurally and functionally a true lung in all respects.  相似文献   

6.
Abstract: Two types of negatively geotropic aerial roots may be observed on the root system of Laguncularia racemosa: pneumatophores with secondary growth, and short-lived pneumathodes which remain in the primary anatomical state. The pneumathodes distinguish themselves by the absence of an epidermis; instead, the outer cortex takes the place of the outermost tissue. This tissue forms a three-dimensional network of rod-like cells and gas spaces. The cell walls contain a lipophilic substance which ensures that the intercellular spaces remain gas-filled during submergence. An uniseriate cellular layer separates the outer and inner cortex. This uniseriate cellular layer, which we term a "pore layer", is characterized by cells with suberized and lignified cell walls and occasional pores among the cells. The pores permit the diffusion of oxygen-rich air from the surface of the pneumathode to the aerenchyma of the inner cortex and the escape of carbon dioxide from the interior of the root. The structure of the differentiated pneumathode originates from frequent cell divisions in the part of the apical meristem where the outer cortex emerges. Because of the pressure thereby exerted on the epidermis and hypodermis, these two cell layers tear and become separated from the outer cortex. Their remnants remain visible at the base of the pneumathode and as an appendage of the calyptra. The function and significance of the pneumathodes for L. racemosa are discussed. An extract of Xanthoria parietina was employed as a new fluorescent dye to stain suberine in cell walls. The staining technique is presented in this paper.  相似文献   

7.
Ozone concentration in leaf intercellular air spaces is close to zero   总被引:23,自引:2,他引:21       下载免费PDF全文
Laisk A  Kull O  Moldau H 《Plant physiology》1989,90(3):1163-1167
Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly by supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.  相似文献   

8.
Little is known about lung function during early stages of postnatal maturation, although the complex structural changes associated with developing rat lung are well studied. We therefore analyzed corresponding functional (lung volume, respiratory mechanics, intrapulmonary gas mixing, and gas exchange) and structural (alveolar surface area, mean linear intercept length, and alveolar septal thickness) changes of the developing rat lung at 7-90 days. Total lung capacity (TLC) increased from 1.54 +/- 0.07 to 16.7 +/- 2.46 (SD) ml in proportion to body weight, but an increase in body weight exceeded an increase in lung volume by almost twofold. Series dead space volume increased from 0.21 +/- 0.03 to 1.38 +/- 0.08 ml but decreased relative to TLC from 14% to 8%, indicating that parenchymal growth exceeded growth of conducting airways. Diffusing capacity of CO (D(CO)) increased from 8.1 +/- 0.8 to 214.1 +/- 23.5 micromol min(-1) hPa(-1), corresponding to a substantial increase in surface area from 744 +/- 20 to 6,536 +/- 488 cm(2). D(CO) per unit of lung volume is considerably lower in the immature lung, inasmuch as D(CO)/TLC in 7-day-old rats was only 42% of that in adult (90 day-old) rats. In humans, however, infants and adults show comparable specific D(CO). Our functional and structural analysis shows that gas exchange is limited in the immature rat lung. The pivotal step for improvement of gas exchange occurs with the transition from bulk alveolarization to the phase of expansion of air spaces with septal reconstruction and microvascular maturation.  相似文献   

9.
Among the extant air‐breathing vertebrates, the avian respiratory system is structurally the most complex and functionally the most efficient gas exchanger. Having been investigated for over four centuries, some aspects of its biology have been extremely challenging and highly contentious and others still remain unresolved. Here, while assessing the most recent findings, four notable aspects of the structure and function of the avian respiratory system are examined critically to highlight the questions, speculations, controversies and debates that have arisen from past research. The innovative techniques and experiments that were performed to answer particular research questions are emphasised. The features that are outlined here concern the arrangement of the airways, the path followed by the inspired air, structural features of the lung and the air and blood capillaries, and the level of cellular defence in the avian respiratory system. Hitherto, based on association with the proven efficiency of naturally evolved and human‐made counter‐current exchange systems rather than on definite experimental evidence, a counter‐current gas exchange system was suggested to exist in the avian respiratory system and was used to explain its exceptional efficiency. However, by means of an elegant experiment in which the direction of the air‐flow in the lung was reversed, a cross‐current system was shown to be in operation instead. Studies of the arrangement of the airways and the blood vessels corroborated the existence of a cross‐current system in the avian lung. While the avian respiratory system is ventilated tidally, like most other invaginated gas exchangers, the lung, specifically the paleopulmonic parabronchi, is ventilated unidirectionally and continuously in a caudocranial (back‐to‐front) direction by synchronized actions of the air sacs. The path followed by the inspired air in the lung–air sac system is now known to be controlled by a mechanism of aerodynamic valving and not by anatomical valves or sphincters, as was previously supposed. The structural strength of the air and blood capillaries is derived from: the interdependence between the air and blood capillaries; a tethering effect between the closely entwined respiratory units; the presence of epithelial–epithelial cell connections (retinacula or cross‐bridges) that join the blood capillaries while separating the air capillaries; the abundance and intricate arrangement of the connective tissue elements, i.e. collagen, elastin, and smooth muscle fibres; the presence of type‐IV collagen, especially in the basement membranes of the blood–gas barrier and the epithelial–epithelial cell connections; and a putative tensegrity state in the lung. Notwithstanding the paucity of free surface pulmonary macrophages, the respiratory surface of the avian lung is well protected from pathogens and particulates by an assortment of highly efficient phagocytic cells. In commercial poultry production, instead of weak pulmonary cellular defence, stressful husbandry practices such as overcrowding, force‐feeding, and intense genetic manipulation for rapid weight gain and egg production may account for the reported susceptibility of birds to aerosol‐transmitted diseases.  相似文献   

10.
Respiration of bulky plant organs such as roots, tubers, stems, seeds, and fruit depends very much on oxygen (O2) availability and often follows a Michaelis-Menten-like response. A multiscale model is presented to calculate gas exchange in plants using the microscale geometry of the tissue, or vice versa, local concentrations in the cells from macroscopic gas concentration profiles. This approach provides a computationally feasible and accurate analysis of cell metabolism in any plant organ during hypoxia and anoxia. The predicted O2 and carbon dioxide (CO2) partial pressure profiles compared very well with experimental data, thereby validating the multiscale model. The important microscale geometrical features are the shape, size, and three-dimensional connectivity of cells and air spaces. It was demonstrated that the gas-exchange properties of the cell wall and cell membrane have little effect on the cellular gas exchange of apple (Malus×domestica) parenchyma tissue. The analysis clearly confirmed that cells are an additional route for CO2 transport, while for O2 the intercellular spaces are the main diffusion route. The simulation results also showed that the local gas concentration gradients were steeper in the cells than in the surrounding air spaces. Therefore, to analyze the cellular metabolism under hypoxic and anoxic conditions, the microscale model is required to calculate the correct intracellular concentrations. Understanding the O2 response of plants and plant organs thus not only requires knowledge of external conditions, dimensions, gas-exchange properties of the tissues, and cellular respiration kinetics but also of microstructure.  相似文献   

11.
Leaf structural characteristics and gas-exchange measurements were used to determine whether photosynthetic tissue of Typha Iatifolia L. (cattail) utilized CO2 from the aerenchyma gas spaces, part of an internal pathway for gas transport in this wetland species. The partial pressure of CO2 (pCO2) in these aerenchyma gas spaces can be more than 10 times atmospheric pCO2. The photosynthetic tissue occurred in structurally similar adaxial and abaxial palisades, which were distinctly separated from each other by the aerenchyma gas spaces. In each palisade there were three to four layers of tightly packed, nonchlorophyllous cells separating the photosynthetic tissue from the aerenchyma gas space. Different lines of evidence indicated that CO2 conductance in the light was significantly greater across the epidermal surface than across the internal surface of both palisades. However, at an epidermal pCO2 of 350 [mu]bars and an internal pCO2 of 820 [mu]bars, the net rates of CO2 uptake (PN) across the epidermal and internal surfaces were about equal. PN across the internal surface was greater than across the epidermal surface at higher internal pCO2. Gas space pCO2 can be greater than 820 [mu]bars in the field, and therefore, PN across the internal surface could be a significant proportion of epidermal surface PN.  相似文献   

12.
Successful transition to air breathing at birth depends on perinatal maturation of the gas exchange surface, resorption of fluid from the air spaces, and synthesis and secretion of pulmonary surfactant. Genetic mutations that alter lung development and/or cellular differentiation in the prenatal period, lung function in the perinatal period, or lung homeostasis in the postnatal period can lead to neonatal lethality or chronic lung disease. Current knowledge of the molecular pathways that regulate key prenatal, perinatal, and postnatal morphogenetic events has been shaped largely by remarkable advances in transgenic technologies. In this review, selected transgenic mouse models are highlighted to illustrate the power of this technology, which in many cases has provided important insights that otherwise could not have been obtained.  相似文献   

13.
The evolution of air-breathing in land crabs is associated with a progressive shift in the primary site of respiratory gas exchange from the diffusion-limited gills used for water-breathing, via a simple 'cutaneous' lung surface to the perfusion-limited, invaginated lung described in the mountain crab, Pseudothelphusa garmani. The reduced diffusion limitation over the lungs facilitates oxygen transfer from air to the tissues at lower ventilation rates but is associated with accumulation of carbon dioxide. A potential respiratory acidosis is buffered by the respiratory pigment haemocyanin and by elevation of haemolymph bicarbonate levels. These changes parallel those described in vertebrates but air-breathing crustaceans maintain relatively low carbon dioxide levels in the haemolymph, either by retaining an aquatic route for its elimination over the reduced gills or by blowing it off across the lung. Maintenance of low carbon dioxide levels may be associated with a limited capacity to buffer against an acidosis due to low levels of circulating haemocyanin (i.e. crustaceans lack red blood cells). This may ultimately limit their survival in air as an acidosis will reduce oxygen transport due to a marked Bohr effect on haemocyanin. The primary role of an invaginated lung may be to reduce rates of water loss in air.  相似文献   

14.
Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.  相似文献   

15.
Air volume measurement of 'Braeburn' apple fruit   总被引:2,自引:0,他引:2  
The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown.  相似文献   

16.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of extreme prematurity and is defined clinically by dependence on supplemental oxygen due to impaired gas exchange. Optimal gas exchange is dependent on the development of a sufficient surface area for diffusion. In the mammalian lung, rapid acquisition of distal lung surface area is accomplished in neonatal and early adult life by means of vascularization and secondary septation of distal lung airspaces. Extreme preterm birth interrupts secondary septation and pulmonary capillary development and ultimately reduces the efficiency of the alveolar‐capillary membrane. Although pulmonary health in BPD infants rapidly improves over the first few years, persistent alveolar‐capillary membrane dysfunction continues into adolescence and adulthood. Preventative therapies have been largely ineffective, and therapies aimed at promoting normal development of the air‐blood barrier in infants with established BPD remain largely unexplored. The purpose of this review will be: (1) to summarize the histological evidence of aberrant alveolar‐capillary membrane development associated with extreme preterm birth and BPD, (2) to review the clinical evidence assessing the long‐term impact of BPD on alveolar‐capillary membrane function, and (3) to discuss the need to develop and incorporate direct measurements of functional gas exchange into clinically relevant animal models of inhibited alveolar development. Birth Defects Research (Part A) 100:168–179, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
18.
Does lateral gas diffusion in leaves matter?   总被引:1,自引:1,他引:0  
Photosynthesis depends on the diffusion of gaseous CO(2) inside the leaf spaces from the stomatal entry point to the mesophyll cell walls. Although most research considers only the vertical diffusion from stomata on upper and/or leaf lower surfaces, some of the gas will diffuse in the lateral (paradermal) direction. The importance of lateral CO(2) diffusion is reviewed, and the anatomical characteristics of leaves, including the variation of air space volume between species and conditions are discussed. The contribution of the air space conductance to the limitation of photosynthesis by the overall CO(2) diffusion pathway is usually ignored. However, the need to consider three-dimensional diffusion at the small scale of a few stomata is emphasized because stomata are discrete, and separated by 20-300 microm. At the large scale of 100s of micrometres, there may be barriers to CO(2) caused by the vascular tissue, particularly if there are bundle sheath extensions. The possible extent and controls on CO(2) lateral and vertical diffusion in different species and conditions are illustrated using chlorophyll a fluorescence imaging techniques. It is clear that there is a range of effective lateral permeabilities depending on the particular vascular patterns and cell arrangements, and that species cannot be simply divided into homobaric and heterobaric anatomies. Lateral diffusion in more permeable leaves can be sufficient to affect measurements of leaf gas exchange, particularly when fluxes are low, although its contribution to leaf photosynthesis in natural conditions needs clarification.  相似文献   

19.
SYNOPSIS. Unlike internal exchange surfaces, the skin contactsan "infinite pool" of air or water with which exchange of gases,water, ions, and other solutes may occur. Even though the "infinitepool" may be well mixed, an unstirred diffusion boundary layeris always present about the skin and may constitute a significantresistance to exchange. The thickness of the diffusion boundarylayer (as approximated by the fluid dynamic boundary layer)is related to the flow of the respiratory medium, viscosityand density of the medium, and the morphology of the exchangesurface. Oxygen microelectrode studies suggest that, in mostcircumstances, the diffusion boundary layer in water is at leastas thick as the blood-respiratory medium distance in amphibianskin. Accordingly, the movement of water about the skin {i.e.,skin ventilation) should have pronounced effects on cutaneousexchange, especially at low "free stream" velocities. Mountingphysiological evidence suggests that: (1) skin ventilation canaugment cutaneous gas exchange; and (2) some vertebrates activelyventilate their skins, especially in aquatic hypoxia. The ubiquityand significance of diffusion boundary layers are central toa general understanding of cutaneous exchange and all surface-mediatedexchange processes.  相似文献   

20.
The Diffusion of Oxygen, Carbon Dioxide, and Inert Gas in Flowing Blood   总被引:1,自引:0,他引:1  
Measurements were made of exchange rates of oxygen, carbon dioxide, and krypton-85 with blood at 37.5°C. Gas transfer took place across a 1 mil silicone rubber membrane. The blood was in a rotating disk boundary layer flow, and the controlling resistance to transfer was the concentration boundary layer. Measured rates were compared with rates predicted from the equation of convective diffusion using velocities derived from the Navier-Stokes equations and diffusivities calculated from the theory for conduction in a heterogeneous medium. The measured absorption rate of krypton-85 was closely predicted by this model. Significant deposition of material onto the membrane surface, resulting in an increased transfer resistance, occurred in one experiment with blood previously used in a nonmembrane type artificial lung. The desorption rate of oxygen from blood at low Po21 was up to four times the corresponding transfer rate of inert gas. This effect is described somewhat conservatively by a local equilibrium form of the convective diffusion equation. The carbon dioxide transfer rate in blood near venous conditions was about twice that of inert gas, a rate significantly greater than predicted by the local equilibrium theory. It should be possible to apply these theoretical methods to predict exchange rates with blood flowing in systems of other geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号