首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antibiotics Streptovirudin and 24010 were tested to determine their effects on the formation of lipid-linked saccharide intermediates associated with glycoprotein biosynthesis in mung bean (Vigna radiata) and suspension-cultured soybean cells (Glycine max cv. Mandarin). In vitro both compounds strongly inhibited the transfer of N-acetyl[3H]glucosamine from UDP-N-[3H]acetylglucosamine to N-acetylglucosaminyl-pyrophosphoryl-polyisoprenol and lipid-linked oligosaccharides, although they had no apparent effect on the incorporation of [14C]mannose from GDP-[14C]mannose into mannosyl-phosphoryl-dolichol with a small inhibition into lipid-linked oligosaccharides. In vivo, Streptovirudin and tunicamycin dramatically inhibited the incorporation of N-[14C]acetylglucosamine and [3H]mannose into Pronase-released material (glycoproteins), whereas there was no effect on [3H]leucine incorporation into Pronase-released material (protein). Because the action of Streptovirudin and antibiotic 24010 in plants and other systems is similar to that for tunicamycin, these antibiotics are believed to be closely related. The use of tunicamycin is discussed with respect to its importance in studying glycoprotein biosynthesis and function in animal and plant systems.  相似文献   

2.
Amphomycin inhibits the incorporation of mannose from GDP-[14C]mannose and GlcNac from UDP-[3H]GlcNAc into lipid-linked saccharides by either a particulate or a solubilized enzyme fraction from pig aorta. The solubilized enzyme was much more sensitive to the antibiotic than was the particulate fraction with 50% inhibition being observed at 8–15 μg of amphomycin. Although the antibiotic inhibited mannose transfer from GDP-[14C]mannose into mannosyl-phosphoryl-dolichol, lipid-linked oligosaccharides and glycoprotein, the synthesis of mannosyl-phosphoryl-dolichol was much more sensitive to amphomycin. Amphomycin also inhibited the incorporation of mannose from GDP-[14C]mannose into mannosyl-phosphoryldecaprenol in particulate extracts of Mycobacterium smegmatis.  相似文献   

3.
The incorporation of [3H]glucosamine, [3H]mannose, and [35S]methionine into rhodopsin was investigated in retinas which had been incubated in the presence and absence of the antibiotic, tunicamycin. In its presence, the incorporation of glucosamine was inhibited 70% and mannose, 96% compared to controls. In the presence of tunicamycin the attachment of glucosamine to core-region sites was virtually eliminated. The formation of unglycosylated rhodopsin was also indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and concanavalin A-Sepharose chromatography. These findings are consistent with the participation of the lipid-linked pathway in the glycosylation of this well-characterized intrinsic glycoprotein of the membranes of the disk of the rod outer segment. As indicated by the incorporation of [35S]methionine, the synthesis of rhodopsin apoprotein was inhibited by a much lesser amount. This suggests that the glycosylation of rhodopsin is not required for its insertion into the disk membrane.  相似文献   

4.
The antibiotic bacitracin was found to inhibit the incorporation of mannose and GlcNAc from their respective sugar nucleotides into lipid-linked saccharides. The inhibition of both systems was apparent in the aorta particulate enzyme system but it was much more pronounced with the solubilized enzyme system. In both cases, GlcNAc incorporation into Dol-P-P-GlcNAc was more sensitive than mannose incorporation into Dol-P-Man, with 50% inhibition being seen at about 0.1–0.2 mm antibiotic. Bacitracin inhibition of mannose incorporation appeared to be overcome at high concentrations of dolichyl phosphate but, in these cases, an unexplained stimulation was observed. However, GlcNAc inhibition could not be overcome by high concentrations of dolichol phosphate, metal ion, or both together. Thus, the mechanism of inhibition by bacitracin is not clear. Bacitracin also inhibited the transfer of mannose from GDP-mannose to lipid-linked oligosaccharides and to glycoprotein in the particulate enzyme, as well as the transfer of radioactivity from Dol-P-Man or from lipid-linked oligosaccharides to glycoprotein. Thus, bacitracin apparently blocks each of the steps in the lipid-linked pathway. In yeast spheroplasts, bacitracin inhibited the incorporation of [14C]mannose into Dol-P-Man, into lipid-linked oligosaccharides, and into glycoprotein. However, in this case, the antibiotic also blocked the incorporation of leucine into protein. Bacitracin also inhibited the cell-free synthesis of mannosyl-phosphoryl-decaprenol in Mycobacterium smegmatis with 50% inhibition being observed at a concentration of about 0.5 mm.  相似文献   

5.
Glycosyl transferases that participate in the assembly of the lipid-linked oligosaccharide intermediates were solubilized from cultured soybean cells using 0.3% Nonidet P-40 (NP-40) in the presence of 10% glycerol. The solubilized enzyme preparation was reasonably stable and 50% of the activity still remained after storage at −10°C for 1 month. The solubilized enzyme synthesized [14C]Man3GlcNAc2-pyrophosphoryl-polyprenol and [14C]Man5GlcNAc2-pyrophosphoryl-polyprenol when incubated with GDP-[14C]mannose plus a partially purified acceptor lipid isolated from calf liver. The formation of these lipid-linked oligosaccharides did not require the addition of dolichyl-phosphate or metal ions. In fact, the addition of 5 to 10 millimolar ethylenediaminetetraacetate stimulated the incorporation of mannose into lipid-linked oligosaccharides 2- to 3-fold. Since little or no dolichyl-phosphoryl-mannose is formed in the presence of ethylenediaminetetraacetate, the results suggest that the mannosyl residues added to form Man3GlcNAc2-lipid and Man5GlcNAc2-lipid come directly from GDP-mannose without the participation of dolichyl-phosphoryl-mannose. On the other hand, the formation of significant amounts of Man6GlcNAc2-lipid, Man7GlcNAc2-lipid, and Man8GlcNAc2-lipid occurred when the above incubations were supplemented with dolichyl-phosphate and metal ions. Based on various time course studies and supplementation studies with various additions, it appears likely that the first five mannose residues to form Man5GlcNAc2-lipid come directly from GDP-mannose, whereas other mannose units to form larger oligosaccharide-lipids come from dolichyl-phosphoryl-mannose.  相似文献   

6.
The effects of various glycoprotein-processing inhibitors on the biosynthesis and secretion of N-linked glycoproteins was examined in cultured Madin-Darby canine kidney (MDCK) cells. Since incorporation of [2-3H]mannose into lipid-linked saccharides and into glycoproteins was much greater in phosphate-buffered saline (PBS) than in serum-supplemented basal medium (BME), most experiments were done in PBS. Castanospermine, an inhibitor of glucosidase I, caused the formation of glycoproteins having mostly Glc3Man7-9(GlcNAc)2 structures; deoxymannojirimycin, an inhibitor of mannosidase I, gave mostly glycoproteins with Man9(GlcNAc)2 structures; swainsonine, an inhibitor of mannosidase II, caused the accumulation of hybrid types of oligosaccharides. Castanospermine and swainsonine, either in PBS or in BME medium, had no effect on the incorporation of [2-3H]mannose or [5,6-3H]leucine into the secreted glycoproteins and, in fact, there was some increase in mannose incorporation in their presence. These inhibitors also did not affect mannose incorporation into cellular glycoproteins nor did they affect the biosynthesis as measured by mannose incorporation into lipid-linked saccharides. On the other hand in PBS medium, deoxymannojirimycin, at 25 micrograms/mL, caused a 75% inhibition in mannose incorporation into secreted glycoproteins, but had no effect on the incorporation of [3H]leucine into the secreted glycoproteins. Since deoxymannojirimycin also strongly inhibited mannose incorporation into lipid-linked oligosaccharides in PBS, the decreased amount of radioactivity in the secreted and cellular glycoproteins may reflect the formation of glycoproteins with fewer than normal numbers of oligosaccharide chains, owing to the low levels of oligosaccharide donor. However, in BME medium, there was only slight inhibition of mannose incorporation into lipid-linked saccharides and into cellular and secreted glycoproteins.  相似文献   

7.
Following treatment of Chinese hamster ovary cells with inhibitors of mevalonate biosynthesis in the presence of exogenous cholesterol, the cellular concentration of phosphorylated dolichol and the incorporation of [3H]mannose into dolichol-linked saccharides and N-linked glycoproteins declined coincident with a decline in DNA synthesis. Addition of mevalonate to the culture medium increased rates of mannose incorporation into lipid-linked saccharides and restored mannose incorporation into N-linked glycoproteins to control levels within 4 h. After an additional 4 h, synchronized DNA synthesis began. Inhibition of the synthesis of lipid-linked oligosaccharides and N-linked glycoproteins by tunicamycin prevented the induction of DNA synthesis by mevalonate, indicating that glycoprotein synthesis was required for cell division. The results suggest that the rate of cell culture growth may be influenced by the level of dolichyl phosphate acting to limit the synthesis of N-linked glycoproteins.  相似文献   

8.
Cell-free enzyme particles from mung bean seedlings catalyze the incorporation of mannose from GDP-[14C]mannose and GlcNAc from UDP-[3H]GlcNAc into glycolipids and into glycoprotein. The most rapidly labeled product from GDP-mannose was characterized as a mannosyl-phosphoryl-polyisoprenol, whereas that from UDP-GlcNAc was a mixture of GlcNAc-(pyro)phosphoryl-polyisoprenol and a disaccharide composed of two N-acetylglucosamine residues attached to the polyisoprenol by a phosphoryl or pyrophosphoryl linkage. Radioactivity from GDP-mannose and UDP-GlcNAc was also incorporated into more polar lipids which have been partially characterized as a series of oligosaccharide-(pyro)phosphoryl-lipids. The mannose-labeled oligosaccharides released from these lipids by mild acid hydrolysis were found to contain GlcNAc at their reducing end indicating that these oligosaccharides contain both GlcNAc and mannose. Both the GlcNAc-labeled and the mannose-labeled oligosaccharides gave multiple radioactive peaks upon paper chromatography indicating that they are composed of a series of different sized oligosaccharides. Finally, radioactivity from GDP-[14C]mannose and UDP-[3H]GlcNAc is incorporated into an insoluble component. Ten percent of the mannose label and all of the GlcNAc label in this insoluble material could be solubilized by digestion with Pronase. The glycopeptides released by Pronase digestion appeared to be approximately the same size as the oligosaccharides from the lipid-linked oligosaccharides based on gel filtration chromatography on Sephadex G-50. The results are consistent with a mechanism for glycoprotein synthesis involving lipid-linked oligosaccharide intermediates.  相似文献   

9.
1. Explants of mammary glands of pregnant rabbits cultured in the absence of insulin, prolactin and cortisol incorporated [2-3H]mannose into lipid-linked mono- and oligo-saccharide and protein. 2. Inclusion of the hormones in the culture medium stimulated the incorporation of [2-3H]mannose into lipid-linked monosaccharide 4-fold, into lipid-linked oligosaccharide 4-fold and into protein 13-fold after 24 h in culture. 3. Addition of tunicamycin to the incubation medium completely inhibited the incorporation of [2-3H]mannose into lipid-linked oligosaccharide and protein after an initial lag period of about 2h. Incorporation of this radiolabel into lipid-linked monosaccharide was increased 4-fold under these conditions. 4. Incorporation of [4,5-3H]leucine into protein was unaffected by the presence of tunicamycin. 5. Analysis of mannose-labelled protein by polyacrylamide-gel electrophoresis indicated that a major radiolabelled protein of apparent mol.wt. 65,000-70,000 was synthesized and approx. 70% of this protein appeared in the soluble fraction. 6. Glycosylation of the protein but not synthesis of its peptide backbone was sensitive to tunicamycin. 7. Possible origins of this glycoprotein synthetized when the tissue is stimulated to differentiate in culture are discussed.  相似文献   

10.
The importance of glycosylation in cell surface expression of muscarinic receptors in cultured guinea pig pancreatic acini was investigated. Recovery of the muscarinic receptor population after carbachol-induced down regulation was blocked by cycloheximide but not by tunicamycin, although tunicamycin reduced [3H]mannose incorporation into acinar macromolecules by up to 90%. Tunicamycin treatment also failed to alter carbachol stimulation of amylase secretion from cultured acini. These results indicate that glycosylation of the glandular subtype of muscarinic receptor in the pancreatic acinar cell is not necessary for its insertion in the plasma membrane or for its functional activity.  相似文献   

11.
Tunicamycin, a glucosamine-containing antibiotic inhibited the conjugation process of Tetrahymena pyriformis. Sexual pairing was prevented completely when 1.5 μg/ml of tunicamycin was added to a mixture of the two mating types. Tunicamycin caused preferential inhibition of glycoprotein synthesis in Tetrahymena pyriformis. At 1.5 μg/ml and 6 μg/ml tunicamycin inhibited by 40% and 60% respectively [3H]-glucosamine incorporation into material precipitated by ethanol, while it did not affect [14C]-leucine incorporation. Cell division was also inhibited when the drug was added either to the regular growth medium or to the starvation medium.  相似文献   

12.
The particulate enzyme fraction from mung bean (Phaseolus aureus) seedlings catalyzes the incorporation of mannose from GDP-[14C]mannose into mannosyl-phosphoryl-dolichol and of N-acetylglucosamine from UDP-[3H]N-acetylglucosamine into N-acetylglucosamine-pyrophosphoryl-polyisoprenol. Bacitracin inhibits the transfer of both of these sugars into the lipid-linked saccharides with 50% inhibition being observed at 5 mm bacitracin. This antibiotic did not inhibit the transfer of glucose from UDP-[14C]glucose into steryl glucosides or the incorporation of glucose into a cell wall glucan. Bacitracin also inhibited the in vivo incorporation of [14C]mannose into mannosyl-phosphoryl-dolichol and into glycoprotein by carrot (Daucus carota) slices. While bacitracin also inhibited the incorporation of lysine into proteins by these slices, protein synthesis was less sensitive than glycosylation. Thus at 2 mm bacitracin glycosylation was inhibited 92%, while protein synthesis was inhibited only 50%.  相似文献   

13.
The particulate enzyme from pig aorta catalyzed the transfer of glucose from UDP-glucose into glucosyl-phosphoryl-dolichol, into lipid-linked oligosaccharides, and into glycoprotein. Radioactive lipid-linked oligosaccharides were prepared by incubating the extracts with GDP-[14C]mannose and UDP-[3H]glucose. When the labeled oligosaccharides were run on Bio-Gel P-4, the two different labels did not exactly coincide; the 3H peak eluted slightly earlier indicating that it was of higher molecular weight than the 14C material, but there was considerable overlap. The purified oligosaccharide(s) contained glucose, mannose, and N-acetylglucosamine but the ratios of these sugars varied from one enzyme preparation to another, probably depending on the endogenous oligosaccaride-lipids present in the microsomal preparation. Treatment of the [3H]glucose-labeled oligosaccharide with α-mannosidase gave rise to a 3H-labeled oligosaccharide which moved somewhat faster on Bio-Gel P-4 than the original oligosaccharide, suggesting it had lost one or two sugar residues. These data indicate that mannose and glucose are in the same oligosaccharide. The antibiotic, amphomycin, inhibited the transfer of glucose from UDP-glucose into the lipid-linked saccharides. However the synthesis of glucosyl-phosphoryl-dolichol was much more sensitive then was the synthesis of lipid-linked oligosaccharides. The glucose-labeled oligosaccharide produced in the absence of amphomycin was of high molecular weight based on paper chromatography. But in the presence of partially inhibitory concentrations of antibiotic, the oligosaccharide migrated more rapidly on paper chromatograms. However, amphomycin had no effect on the synthesis of glucosyl-ceramide by the aorta extracts. In fact, the antibiotic may stimulate glucosyl-ceramide by making more of the substrate, UDP-glucose, available for synthesis of this lipid.  相似文献   

14.
The effects of tunicamycin on protein glycosylation and cell differentiation were examined during early development of Dictyostelium discoideum. Tunicamycin inhibited cell growth reversibly in liquid medium. At a concentration of 3 μg/ml, tunicamycin completely inhibited morphogenesis and cell differentiation in developing cells. These cells remained as a smooth lawn and failed to undergo chemotactic migration. The expression of EDTA-resistant contact sites was also inhibited. The inhibition by tunicamycin was reversible if cells were washed free of the drug within the first 10 hr of incubation. After 12 hr of development, cells were protected from the drug by the sheath. When cells were treated with tunicamycin during the first 10 hr of development, incorporation of [3H]mannose and [3H] fucose was inhibited by approximately 75% within 45 min while no significant inhibition of [3H]leucine incorporation was observed during the initial 3 hr of drug treatment. The inhibition of protein glycosylation was further evidenced by the reduction in number of glycoproteins “stained” with 125I-labelled con A. A number of developmentally regulated high-molecular-weight glycoproteins, including the contact site A glycoprotein (gp80), were undetectable when cells were labelled with [3H]fucose in the presence of tunicamycin. It is therefore evident that glycoproteins with N-glycosidically linked carbohydrate moieties may play a crucial role in intercellular cohesiveness and early development of D. discoideum.  相似文献   

15.
Summary The molecular mechanism of reduced incorporation of radioactively labeled mannose into hamster liver glycoconjugates during the progression of vitamin A deficiency was investigated. In particular the in vivo incorporation of [2-3H]mannose into GDP-mannose, dolichyl phosphate mannose (Dol-P-Man), lipid-linked oligosaccharides, and glycopeptides of hamster liver was examined. Hamsters maintained on a vitamin A-free diet showed a reduction in the incorporation of mannose into GDP-mannose about 10 days before clinical signs of vitamin A deficiency could be observed. The decrease in [2-3H]mannose incorporated into GDP-mannose was accompanied by a reduction in label incorporated into Dol-P-Man, lipid linked oligosaccharides and glycopeptides, which became more severe with the progression of vitamin A deficiency. By the time they reached a plateau stage of growth, hamsters fed the vitamin A-free diet showed a 50% reduction in the amount of [2-3H]mannose converted to GDP-mannose, and the radioactivity associated with Dol-P-Man and glycopeptides was reduced by approximately 60% as compared to retinoic acid-supplemented controls. These results strongly indicate that the reduced incorporation of mannose into lipidic intermediates and glycoproteins observed during vitamin A deficiency is due to impaired GDP-mannose synthesis.Abbreviations Dol-P-Man Dolichyl Phosphate Mannose - Dol-P Dolichyl Phosphate  相似文献   

16.
MOPC 315 is a BALB/c plasmacytoma which secretes a trinitrophenol-binding IgA lambda 2 paraprotein. We have investigated the incorporation of [3H]mannose into lipid-linked oligosaccharide precursors in wild-type MOPC 315/J and variant nonsecretory 315/P cells. In pulse labeling experiments, no differences could be detected in the ability of the two cell types to incorporate [3H]mannose into lipid-linked oligosaccharides containing 5 or less mannose residues. In contrast, quantitation of the incorporation of [3H]mannose into larger lipid-linked oligosaccharides and proteins revealed a 49 and 40% decrease, respectively, in the 315/P cells compared to wild-type cells. Further characterization of the lipid-linked structures documented a marked decrease in glucosylated oligosaccharides isolated from 315/P cells. When membranes from the two cell lines were analyzed for their ability to transfer [3H]glucose from UDP-[3H]glucose to [3H]glucosylphosphoryldolichol, an apparent deficiency was noted in the 315/P preparations. However, if assay conditions were adjusted to include AMP in the reaction mixtures, no differences in the in vitro synthesis of [3H]glucosylphosphoryldolichol or [3H]glucose-labeled oligosaccharide-lipid could be detected. In these reactions AMP was found to prevent hydrolysis of UDP-[3H]glucose by inhibiting nucleotide pyrophosphatase (EC 3.6.1.9), the specific activity of which was determined to be more than 100 times greater in variant 315/P compared to wild-type MOPC 315/J cells. This large difference in specific activity was not accompanied by similar differences in the activity of several other enzymes analyzed. A decrease in whole cell UDP-glucose pool size was not detected in 315/P cells. Therefore, if nucleotide pyrophosphatase is important for the control of substrates for glycosylation, it must regulate nucleotide sugar levels at a site other than the cytoplasm of cells, perhaps at the location of synthesis of the larger lipid-linked oligosaccharides.  相似文献   

17.
Studies were initiated to determine whether the formation of lipid-linked oligosaccharides was coupled to the synthesis of protein. Canine kidney cells were grown with [2-3H]mannose or [3H]leucine in the presence of cycloheximide or puromycin and the effect of these inhibitors on the synthesis of proteins and lipid-linked oligosaccharides was measured. In all cases, the inhibition of protein synthesis resulted in a substantial inhibition in the incorporation of mannose into the lipid-linked oligosaccharides, although the synthesis of mannosyl-phosphoryl-dolichol was only slightly inhibited. Cycloheximide had no effect on the in vitro incorporation of mannose into lipid-linked oligosaccharides when GDP-[14C]mannose was incubated with aorta microsomal preparations. The inhibition of lipid-linked oligosaccharides was apparently not due to a decrease in the amount of glycosyltransferases as a result of protein degradation in the absence of protein synthesis, nor was it the result of a more rapid degradation of lipid-linked oligosaccharides. The inhibition also did not appear to be due to limitations in the available dolichyl-phosphate. The results suggest that the formation of lipid-linked oligosaccharides may be regulated by end product inhibition.  相似文献   

18.
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis.  相似文献   

19.
Protein glycosylation mutants in the mouse mammary carcinoma cell line FM3A were selected for ability to withstand exposure to [2-3H]mannose at 39 degrees C. G258 , one of the mutant cells isolated, has been characterized. G258 cells were temperature-sensitive for cell growth. Moreover, G258 cells showed temperature sensitivity for [3H]mannose incorporation into the TCA-insoluble fraction. To study the biochemical basis of the defect in glycoprotein biosynthesis, the formation of lipid-linked saccharides was examined. The results showed that the formation of lipid-linked oligosaccharides was severely inhibited in G258 cells at 39 degrees C. At 33 degrees C, G258 cells synthesized Glc3Man9GlcNAc2-PP-Dol, the fully assembled lipid-linked oligosaccharides, but at 39 degrees C, G258 cells were able to synthesize merely the smaller lipid-linked oligosaccharides (approximately up to Man3GlcNAc2 -PP-Dol), but were unable to synthesize the larger lipid-linked oligosaccharides.  相似文献   

20.
Deoxymannojirimycin (dMM) was tested as an inhibitor of the processing of the oligosaccharide portion of viral and cellular N-linked glycoproteins. The NWS strain of influenza virus was grown in MDCK cells in the presence of various amounts of dMM, and the glycoproteins were labeled by the addition of 2-[3H]mannose to the medium. At levels of 10 micrograms/ml dMM or higher, most of the viral glycopeptides became susceptible to digestion by endoglucosaminidase H, and the liberated oligosaccharide migrated mostly like a Hexose9GlcNAc on a calibrated column of Bio-Gel P-4. This oligosaccharide was characterized as a typical Man9GlcNAc by a variety of chemical and enzymatic procedures. Deoxymannojirimycin gave rise to similar oligosaccharide structures in the cellular glycoproteins. In both the viral and the cellular glycoproteins, this inhibitor caused a significant increase in the amount of [3H]mannose present in the glycoproteins. Deoxymannojirimycin did not inhibit the incorporation of [3H]leucine into protein in MDCK cells, nor did it affect the yield or infectivity of NWS virus particles. However, its effect on mannose incorporation into lipid-linked saccharides depended on the incubation time, the virus strain, and the cell line. Thus, high concentrations of dMM showed some inhibition of mannose incorporation into lipid-linked oligosaccharides with the NWS strain in a 3-h incubation, but no inhibition was observed after 48 h of incubation. On the other hand, the PR8 strain was much more sensitive to dMM inhibition, and mannose incorporation into lipid-linked oligosaccharides was strongly inhibited when the virus was raised in chick embryo cells, but less inhibition was observed when this virus was grown in MDCK cells. Nevertheless, in these cases also, the major oligosaccharide structure in the glycoproteins was the Man9GlcNAc2 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号