首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nine polymorphic microsatellites were isolated from sprat (Sprattus sprattus) using a microsatellite enrichment protocol and selective hybridization with a biotinylated (AC)(12) probe. The loci showed different variation patterns in a Baltic Sea population (44 individuals) with mean number of alleles at 12.7 and mean observed heterozygosity at 0.78. These microsatellite loci are expected to be used for taxonomic considerations in sprat, stock differentiation and population genetic analysis.  相似文献   

2.
Data on catch per unit effort (CPUE) from the Danish commercial fishery showed dense aggregations of sprat Sprattus sprattus born in 1997 in the main spawning area of the Baltic Sea during May 1999. After the analysis of their otolith macrostructure, these fish were found to have a shorter distance to the beginning of the first winter zone compared to fish from the same cohort caught in other months. At the same time, the number of fish with large otoliths at the period of winter zone formation tended to decrease or even disappear. The otolith size at winter zone formation ( O W) was found to be a good predictor of sprat total length ( L T) and mass ( M ) in age group 0 years. Changes in the otolith size distribution over time were related to variations in cohort composition depending on the L T and M attained during the juvenile stage. Examination of the gonads suggested two life history patterns: 1) individuals achieving a larger L T and M during the first growing season may contribute at age 1 years to the spawning stock and the fishery, whereas 2) individuals attaining smaller L T and M contribute in larger amounts to both the spawning stock and the fishery later, when they are at age 2 years. Moreover, changes in the relationship between O W and L T and M were related to differences in growth trajectories for sprat born during the same spawning season. Smaller sprat as group 0 years continued growing during the second growing season delaying maturity compared to larger individuals from the same cohort.  相似文献   

3.
Lars Witting 《Oikos》2018,127(7):991-1000
I simulate the natural selection of metabolism and mass to explain the curvature in the metabolic allometry for placental and marsupial mammals. The simulation model starts with a single ancestor in each clade at the Cretaceous–Palaeogene boundary 65 million years ago. The release of inter‐specific competition by the extinction of dinosaurs make it possible for each clade to diversify into a multitude of species across a wide range of empty niches. The selection of mass in these species depends on the net assimilated energy that depends on 1) the handling of the resources in the different niches, and on 2) mass‐specific metabolism that defines the pace of the handling process. The model is fitted to explain the maximum observed body masses over time and the current inter‐specific allometry for metabolism. The selection of mass‐specific metabolism is found to bend the metabolic allometry over time, even when all species have the same selection on the per‐generation time‐scale of natural selection. This is because the smaller species evolve over a larger number of generations than the larger species. The strongest curvature is in the placental clade, where the estimated rate of exponential increase in mass‐specific metabolism is 9.3 × 10?9 (95% CI: 7.3 × 10?9 – 1.1 × 10?8) on the per‐generation time‐scale. This is an order of magnitude larger than the estimate for marsupials, in agreement with an average metabolism that is 30% larger in placentals relative to marsupials of similar size.  相似文献   

4.
Early development of Siberian sturgeon Acipenser baeri was divided into two different phases, the prelarval stage between hatching (10·4–11·1 mm LT) and first feeding (19·6–21·0 mm LT), and the larval stage between the initiation of external feeding and metamorphosis (28·6–32·4 mm LT). Morphogenesis and differentiation were more intense during the prelarval than larval and early juvenile stages; the prelarval period was characterized by the replacement of embryonic adaptations and functions by definitive ones, such as branchial respiration, exogenous feeding, and active swimming. The positive allometry of the head for feeding, sensorial and respiratory functions (inflexion point at 20·0 mm LT), and the tail for reducing costs of transport, routine swimming and escape reactions from predators (inflexion point at 20·2 mm LT) confirmed the hypothesis that growth patterns of early life stages closely match specific needs.  相似文献   

5.
Allometric methods can be used to test quantitative theories of the relationship between brain size and body size across species, and to search for ecological, behavioural, life history, and ontogenetic correlates of brain size. Brain size scales with an allometric exponent of around 0.75 against body size across mammals, but is closer to 0.56 for birds and for reptiles. The slope of the allometric line often varies depending upon the taxonomic level of analysis. However, this phenomenon, at least in mammals, may be a statistical artifact. Brain size for a given body size (relative brain size) varies among orders in birds and mammals, and some dietary associations with relative brain size have been found in particular taxa. Developmental status at birth is the most consistent correlate of relative brain size: precocial neonates have larger brains for a given maternal size than altricial neonates in both birds and mammals. Altricial neonates, however, have more brain growth following birth, and in birds also have larger relative adult brain sizes. Energetic explanations for differences in neonatal brain growth, although attractive on theoretical grounds, have largely failed to stand up to empirical tests.  相似文献   

6.
The consumption of estuarine copepods by juvenile herring and sprat during estuarine residency was estimated using fish biomass data and daily rations calculated from two models of feeding in fish: a bioenergetic model and a gastric evacuation model. The bioenergetic model predicted daily rations that were, on average, three times higher than those estimated by a model based on field records of stomach contents. The biomass of herring and sprat in the estuary was negatively correlated with the daily ration suggesting that the clupeid fish populations were resource-limited. Copepod production decreased towards the winter and peaked in spring and summer. The relative importance of predation changed seasonally in function of the migration pattern of herring and sprat. In the spring and the summer, in situ production ofcopepod biomass was higher than the in situ consumption by fish. During the fall and the winter, consumption exceeded production. This suggests that top–down control exerted by marine pelagic fish may be an important force structuring estuarine copepod populations.  相似文献   

7.
8.
In this paper I develop a null model for the expected relationship between seed mass and the mass of dispersal structure (reward) for vertebrate-dispersed plant species. The model is based on the simple assumption that the reward associated with a given seed mass is commensurate with work required to move it, and predicts that reward mass should scale relative to seed mass with an exponent of 4/3 (1.3). I tested this relationship between- and within-species of vertebrate-dispersed plants from four families from tropical rain forest in north Queensland, Australia. At a community-level there was a significant isometric relationship between log mean pulp mass and log mean seed mass across species. When family membership was considered, the estimate for the common slope between families was 1.32, surprisingly similar to the exponent predicted from commensurate reward. In addition, the 95% CI of the common slope did not include unity, providing no support for isometry. There was also no evidence that the relationships between mean log pulp mass and mean log seed mass were significantly different between families. This simple null model may be a common “rule” governing mean allocation to reward in all plant–animal dispersal mutualisms and its confirmation is the first evidence that animal dispersers have shaped the evolution of seed traits. However, I found no evidence that the scaling relationships within-species were consistently predicted by commensurate reward – a “taxon-level effect”. I suggest that the taxon-level effect arises because mean seed and mean reward mass within each species arises due to community-wide, disperser-mediated selection to produce equally attractive fruits, whereas within-species allometries may be determined by selection for fruit traits that enhance either dispersal probabilities, offspring survival or both, and these will be contingent on the environmental context into which seeds are released. G. P. Cheplick  相似文献   

9.
Based on sperm competition theory, percentage testes mass (% of total body mass) has been used to infer variations in the extent of sperm competition within mating systems of cetaceans. However, in most amniote taxa, including mammals, there is an underlying negative relationship between body mass and relative investment in testes mass, which must first be taken into account. Here, I identify a very strong nonlinear, negative relationship between body mass in cetaceans and relative investment in testes mass based on data from 31 species. As a result, if percentage testes mass alone is used to infer the relative extent of sperm competition in cetaceans, its importance in mating systems of smaller species is likely to be overestimated, whereas its role in larger species is likely to be underestimated. Similarly, there will also be systematic biases if this relationship is assumed to be linear when it is not. Therefore, it is essential that the underlying, nonlinear body mass–testes mass relationship is correctly taken into account when using relative investment in testes mass to estimate the relative levels of sperm competition in cetaceans. This is particularly important if such inferences are used to inform conservation strategies for endangered cetacean species.  相似文献   

10.
1. Allometric theory makes specific predictions about how density, and consequently biomass, scale with organism size within trophic levels, across trophic levels and across food webs. 2. Diversity-yield relationships suggest that more diverse food webs can sometimes support more biomass through mechanisms involving niche complementarity or selection effects that are sometimes attributed to organism size. 3. We combine the above two approaches and show that, generally, density and biomass scale with organism size within and between trophic levels as predicted by allometric theory. Further, food webs converged in total biomass despite persistent differences in the composition and size of the organisms among food webs; species richness explained deviations from the constant yield of biomass expected from size-abundance relationships. 4. Our results suggest that organism size plays only a transient role in controlling community biomass because population increases or decreases lead to rapid convergence in biomass. Species richness affects community biomass independently by effectively increasing the mass of organisms that can be supported in a given productivity regime.  相似文献   

11.
Epiphyseal fusion in primates is a process that occurs in a regular sequence spanning a period of years and thus provides biological anthropologists with a useful marker of maturity that can be used to assess age and stage of development. Despite the many studies that have catalogued fusion timing and sequence pattern, comparatively little research has been devoted to understanding why these sequences exist in the first place. Answering this question is not necessarily intuitive; indeed, given that neither taxonomic affinities nor recent adaptations have been clearly defined, it is a challenge to explain this process in evolutionary terms. In all mammals, there is a tendency for the fusion of epiphyses at joints to occur close in sequence, and this has been proposed to relate to locomotor adaptations. Further consideration of the evidence suggests that linking locomotor behavior to sequence data alone is difficult to prove and may require a different type of evidence. Epiphyseal fusion should be considered in the context of other parameters that affect the developing skeleton, including how joint morphology relates to growth in length, as well as other possible morphological constraints. In recent years, developmental biology has been providing a better understanding of the molecular regulators of epiphyseal fusion. At some point in the near future, we may be able to link our understanding of the genetics of fusion timing to the possible selective mechanisms that are responsible for these sequences.  相似文献   

12.
13.
The effect of sampling with bongo (0·6 m diameter frame with 500 µm mesh) and Methot Isaac Kidd (MIK) (2 m diameter frame with 2 mm mesh finished with 500 µm codend) nets on standard length (LS) range and growth rate differences was tested for larval Sprattus sprattus (n = 906, LS range: 7·0–34·5 mm) collected during four cruises in the summer months of 2006, 2007, 2009 and 2010 in the southern Baltic Sea. Although the minimum size of larvae collected with the bongo and MIK nets was similar in each cruise (from c. 7 to 9 mm), the MIK nets permitted collecting larger specimens (up to c. 34 mm) than the bongo nets did (up to c. 27 mm). The growth rates of larvae collected with the bongo and MIK nets (specimens of the same size range were compared for three cruises) were not statistically different (mean = 0·55 mm day?1, n = 788, LS range: 7·0–27·4 mm), which means the material collected with these two nets can be combined and growth rate results between them were compared.  相似文献   

14.
Many factors could influence the allometric scaling exponent β estimation, but have not been explored systematically. We investigated the influences of three factors on the estimate of β based on a data set of 626 species of basal metabolic rate and mass in mammals. The influence of sampling error was tested by re-sampling with different sample sizes using a Monte Carlo method. Small random errors were introduced to measured data to examine their influence on parameter estimations. The influence of analysis method was also evaluated by applying nonlinear and linear regressions to the original data. Results showed that a relative large sample size was required to lower statistical inference errors. When sample size n was 10% of the base population size (n=63), 35% of the samples supported β=2/3, 39% supported β=3/4, and 15% rejected β=0.711, even though the base population had a β=0.711. The controversy surrounding the estimation of β in the literature could be partially attributable to such small sample sizes in many studies. Measurement errors in body mass and base metabolic rate, especially in body mass, could largely increase alpha and beta errors. Analysis methods also affected parameter estimations. Nonlinear regressions provided better estimates of the scaling exponent that were significantly higher than these commonly estimated by linear regressions. This study demonstrated the importance of the quantity and quality of data as well as analysis method in power law analysis, raising caution in interpreting power law results. Meta-data synthesis using data from independent studies seems to be a proper approach in the future, but caution should be taken to make sure that such measurements are made using similar protocols.  相似文献   

15.
Traditionally a few limb proportions or total limb lengths have been regarded as indicative of peak running velocity. This is due to physical principles (inferred in- and outvelocities around the joints, stride lengths) and also the observation that fast-moving animals tend to share a number of purported key features which are either absent or not developed to near the same extent in slower moving forms. Previous studies have shown hind limb length and metatarsus/femur ratio to be correlated significantly, albeit modestly with running speed. These studies have nearly all been bivariate analyses. Based on the physical principles, there is reason to suppose that more variables than just m/f ratio could be important as adaptations for fast locomotion, and also that bivariate analyses are too simple. In this study a sample of 76 running mammals was used, with running speeds taken from literature. A number of osteological parameters were discovered to covary significantly with peak running speed, albeit only modestly. Using the information from phylogeny reduced all correlations, often significantly so. Multivariate analyses resulted in markedly higher correlation coefficients. Animals probably do not optimize their anatomy for the purpose of running very fast, which occurs only on rare occasions, but for reducing costs of locomotion.  © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 136 , 685–714.  相似文献   

16.
Recent advances in allometric theory have proposed a novel quantitative framework by which to view the evolution of plant form and function. This general theory has placed strong emphasis on the importance of long‐distance transport in shaping the evolution of many attributes of plant form and function. Specifically, it is hypothesized that with the evolutionary increase in plant size natural selection has also resulted in vascular networks that minimize scaling of total hydrodynamic resistance associated with increasing transport distances. Herein the central features of this theory are reviewed and a broad sampling of supporting but yet preliminary empirical data are analysed. In particular, subtle attributes of the scaling of tracheid and vessel anatomy are hypothesized to be crucial for the evolution of increased plant size. Furthermore, the importance of minimizing hydrodynamic resistance associated with increased transport distances is also hypothesized to be reflected in an isometric scaling relationship between stem mass, MS and root mass, MR(i.e. MSMR). Preliminary data from multiple extant and fossil plant taxa provide tantalizing evidence supporting the predicted relationships. Together, these results suggest that selection for the minimization of the scaling of hydrodynamic resistance within plant vascular networks has in turn allowed for the enormous diversification in vascular plant size.  相似文献   

17.
Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall‐climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall‐climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross‐sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. J. Morphol. 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The factors regulating the structure of food webs are a central focus of community and ecosystem ecology, as trophic interactions among species have important impacts on nutrient storage and cycling in many ecosystems. For soil invertebrates in grassland ecosystems in the Netherlands, the site-specific slopes of the faunal biomass to organism body mass relationships reflected basic biochemical and biogeochemical processes associated with soil acidity and soil C : N : P stoichiometry. That is, the higher the phosphorus availability in the soil, the higher, on average, the slope of the faunal biomass size spectrum (i.e., the higher the biomass of large-bodied invertebrates relative to the biomass of small invertebrates). While other factors may also be involved, these results are consistent with the growth rate hypothesis from biological stoichiometry that relates phosphorus demands to ribosomal RNA and protein production. Thus our data represent the first time that ecosystem phosphorus availability has been associated with allometry in soil food webs (supporting information available online). Our results have broad implications, as soil invertebrates of different size have different effects on soil processes.  相似文献   

19.
For leaves, the light-capturing surface area per unit dry mass investment (specific leaf area, SLA) is a key trait from physiological, ecological and biophysical perspectives. To address whether SLA declines with leaf size, as hypothesized due to increasing costs of support in larger leaves, we compiled data on intraspecific variation in leaf dry mass (LM) and leaf surface area (LA) for 6334 leaves of 157 species. We used the power function LM=alpha LAbeta to test whether, within each species, large leaves deploy less surface area per unit dry mass than small leaves. Comparing scaling exponents (beta) showed that more species had a statistically significant decrease in SLA as leaf size increased (61) than the opposite (7) and the average beta was significantly greater than 1 (betamean=1.10, 95% CI 1.08-1.13). However, scaling exponents varied markedly from the few species that decreased to the many that increased SLA disproportionately fast as leaf size increased. This variation was unrelated to growth form, ecosystem of origin or climate. The average within-species tendency found here (allometric decrease of SLA with leaf size, averaging 13%) is in accord with concurrent findings on global-scale trends among species, although the substantial scatter around the central tendency suggests that the leaf size dependency does not obligately shape SLA. Nonetheless, the generally greater mass per unit leaf area of larger than smaller leaves directly translates into a greater cost to build and maintain a unit of leaf area, which, all else being equal, should constrain the maximum leaf size displayed.  相似文献   

20.
We describe the allometry of body mass and body size as measured by hind-tibia length in males of Monoctonus paulensis (Ashmead) (Hymenoptera: Braconidae, Aphidiinae), a solitary parasitoid of aphids. To assess the influence of host quality on allometric relationships, we reared parasitoids on second and fourth nymphal instars of four different aphid species, Acyrthosiphon pisum (Harris), Macrosiphum creelii Davis, Myzus persicae (Sulzer) and Sitobion avenae (F.), under controlled conditions in the laboratory. Dry mass was positively correlated with hind-tibia length, and could be predicted from it, in unparasitized aphids, in aphid mummies containing parasitoid pupae, and in the parasitoid. The reduced-major-axis scaling exponents for the regression of dry mass on hind-tibia length were species-specific in aphids, reflecting differences in volume and shape between species. In mummified aphids, the stage at death influenced the size/mass relationship. In males of M. paulensis, the allometric exponent varied between parasitoids developing in different kinds of host. Individuals developing in pea aphid were absolutely larger in dry mass as well as proportionately larger relative to their hind-tibia length. We discuss the allometry of body size and body mass in relation to parasitoid fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号