首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O-Benzylhydroxylamine (OBHA) is a potent inhibitor of phenylalanineammonialyase (PAL, EC 4.3.1.5 [EC] ) and phenylpropanoid metabolismas evidenced by its effects on three plant species [soybean(Glycine max (L.) Merr.), buckwheat (Fagopyrum esculentum Moench.),and mung bean (Vigna radiata L.)]. When supplied to roots, OBHA(10–5 M) did not significantly inhibit light- or dark-growthof soybean seedlings, but reduced (25%) soluble hydroxyphenoliccompound accumulation in light-grown axes. Higher concentrations(510–5 M) of OBHA caused reductions (25%) in axis freshweight of light-grown seedlings (72 h), but did not lower axisweight of dark-grown seedlings. Anthocyanin accumulation inhypocotyls of intact mung bean seedlings was reduced by 25%after 3 days light growth after treatment with OBHA (10–5M) via root feeding. Anthocyanin content of excised, etiolatedbuckwheat hypocotyls floated on solutions of OBHA (10–5M) and incubated in the light for 24 h was reduced by 40%. L-Phenylalanineand t-cinnamic acid, intermediates of phenylpropanoid metabolism,were able to partially reverse this inhibition in buckwheat.Extractable PAL activity (specific activity basis) in soybeanaxes was substantially reduced (20% in dark, 40% in light) asearly as 24 h after root feeding with OBHA (10–5 M). Reductionof PAL activity (specific activity or per axis basis) by OBHAcompared to control levels, continued throughout a time courseof 96 h. Kinetic studies on soybean PAL revealed a Km of 1.1mM for L-phenylalanine and an apparent Ki of 3.5 µM forOBHA. (Received May 31, 1985; Accepted August 6, 1985)  相似文献   

2.
Biosynthesis of Caffeine in Flower Buds of Camellia sinensis   总被引:1,自引:0,他引:1  
The biosynthesis of purine alkaloids in flower buds of tea plantswas investigated. More than 25% of total radioactivity of [8-14C]adeninetaken up by stamens isolated from tea flower buds was foundto have been incorporated into purine alkaloids, namely, theobromineand caffeine, 24 h after administration of the labelled compound.Pulse-chase experiments indicated that [8-14C]adenine takenup by the stamens was converted to adenine nucleotides and subsequentlyincorporated into theobromine and caffeine. Since 5 µMcoformycin, an inhibitor of AMP deaminase, inhibited the incorporationof radioactivity into the purine alkaloids, synthesis of caffeinefrom adenine nucleotides seems to be initiated by the reactionof AMP deaminase. Although most of the radioactivity from [8-14C]inosinewas recovered as CO2 and ureides, considerable amounts of radioactivitywere recovered as purine alkaloids. The incorporation of radioactivityfrom [8-14C]inosine into the purine alkaloids was not affectedby coformycin. The five enzymes involved in synthesis of 5-phosphoribosyl-1-pyrophosphatefrom glucose were present in the stamens and petals of tea flowerbuds. From present and previous results, the pathway for thebiosynthesis of caffeine from adenine nucleotides in flowerbuds of tea is discussed.Copyright 1993, 1999 Academic Press Camellia sinensis, tea, stamen, flower, biosynthesis, purine alkaloids, caffeine, theobromine, adenine nucleotides, nucleotide biosynthesis  相似文献   

3.
Tea seedlings were treated with 14C-methylamine to cause synthesisof 14C--glutamylmethylamide (N-methyl-14C). The metabolic conversionof -glutamylmethylamide was studied by tracing 14C. 14C--Glutamylmethylamide (N-methyl-14C) translocated from rootsand cotyledons to shoots of tea seedlings, was converted almostentirely into caffeine. Conversion was greater in light-exposedsamples. For those grown in the dark, the converted amount didnot correspond to the total caffeine produced. More 14C--glutamylmethylamidewas present in stems than in leaves, but with 14C-caffeine,the opposite was found. When 14C--glutamylmethylamide or 14C-methylamine was appliedto leaf disks, 14C-caffeine was biosynthesized from both substances. 1 Present address: Department of Agricultural Chemistry, ShizuokaUniversity, Iwata, Shizuoka 438, Japan. (Received September 25, 1971; )  相似文献   

4.
Purine alkaloid catabolism pathways in young, mature and agedleaves of tea (Camellia sinensis L.) were investigated by incubatingleaf sections with 14C-labelled theobromine, caffeine, theophyllineand xanthine. Incorporation of label into CO2 was determinedand methanol-soluble metabolites were analysed by high-performanceliquid chromatography-radiocounting and thin layer chro-matography.The data obtained demonstrate that theobromine is the immediateprecursor of caffeine, which accumulates in tea leaves becauseits conversion to theophylline is the rate limiting step inthe purine alkaloid catabolism pathway. The main fate of [8-14C]theophyllineincubated with mature and aged leaves, and to a lesser extentyoung leaves, is conversion to 3-methylxanthine and onto xanthinewhich is degraded to 14CO2 via the purine catabolism pathway.However, with young leaves, sizable amounts of [8-14C]-theophyllinewere salvaged for the synthesis of caffeine via a 3-methylxanthine  相似文献   

5.
1. Localization of carbon in caffeine molecule biosynthesizedfrom the N-methyl carbon of -glutamylmethylamide in tea plantswas observed. 14C-Caffeine produced from 14C--glutamylmethylamidewas isolated and degraded. Approximately 26–55% of the14C was observed in the three methyl carbons in caffeine, withonly 2–3% at the C-2 carbon, 3–7% at the C-8 carbonposition. The amount of 14C at the C-4, C-5 and C-6 positionswas calculated from the results obtained. 2. The role of the N-methyl carbon of -glutamylmethylamide inthe formation of RNA in tea plants was examined. Incorporationof the N-methyl-14C of 14C--glutamylmethylamide into AMP andGMP in RNA was found. These facts indicate that in tea plants, -glutamylmethylamideis metabolized and most of its N-methyl carbon is utilized asa precursor for caffeine formation and little, if any, as aprecursor for nucleic acid formation. 1 Present address: Department of Agricultural Chemistry, ShizuokaUniversity, Iwata, Shizuoka 438, Japan. (Received February 2, 1972; )  相似文献   

6.
Regulatory effects of light on senescence of rice leaves wereinvestigated by measuring degradation of chlorophyll and proteinsin leaf segments which had been kept in the dark or under illuminationwith light of different intensities and colors. When leaveshad been left in total darkness for three days at 30°C,there was an initial long lag that lasted for one whole dayand then chlorophyll was rapidly degraded in the second andthird days. Breakdown of chlorophyll was strongly retarded bycontinuous illumination with white light of intensity as lowas 0.5 µmol photons m–2 s–1 but the effectof light decreased at intensities above 10 µmol photonsm–2 s–2. The initial lag and subsequent degradationof chlorophyll in the dark were little affected by illuminationwith red or far red light at the beginning of dark treatment.However, a brief illumination with red light at the end of thefirst and/or second day significantly suppressed degradationof chlorophyll during subsequent dark periods and the effectof red light was nullified by a short irradiation with far redlight. Thus, degradation of chlorophyll is regulated by phytochrome.Thylakoid membrane proteins and soluble proteins were also largelydegraded during three days in the dark. Degradation of membraneproteins such as the apoproteins of light-harvesting chlorophylla/b proteins of photosystem II and chlorophyll a-binding proteinsof reaction center complexes showed a long lag and was stronglysuppressed by illumination with weak white light. Thus, theloss of chlorophyll can be correlated with degradation of chlorophyll-carryingmembrane proteins. By contrast, light had only a weak protectingeffect on soluble proteins and ribulose-1,5-bisphosphate carboxylase/oxygenaserapidly disappeared under illumination with weak white light.Thus, breakdown of thylakoid membrane and soluble proteins aredifferently regulated by light. Artifacts which would be introducedby detachment of leaves were also discussed. 1 Present address: Department of Applied Biology, Faculty ofScience and Technology, Science University of Tokyo, Yamazaki,Noda-shi, Chiba, 278 Japan. 2 Present address: Department of Life Science, Faculty of Science,Himeji Institute of Technology, Harima Science Park City, Hyogo,678-12 Japan.  相似文献   

7.
When seedlings of Cuscuta japonica were grown with Vigna radiata(the host plant) in a flower pot for 6 d under white light andthen irradiated with far-red or blue light (ca. 6 µmolphotons m–2 s–1), the seedlings parasitized V. radiata.However, no parasitism of the seedlings was observed under redor white light or in darkness. The parasitic behavior of seedlingsof C. japonica was observed even if an acrylic rod was usedas a substitute for the host plant. Upon incubation under far-redlight, the seedling twined tightly around the rod and developedhaustoria towards it. Haustoria also developed when apical andsubapical regions of seedlings were held between two glass platesthat were about 0.7 mm apart and were irradiated with far-redlight. However, no haustoria were induced by either the holdor irradiation alone. These results indicate that parasitismof Cuscuta japonica is controlled by the cooperative effectsof two physical signals, far-red light and appropriate tactilepressure. Our findings suggest that parasitism by the genusCuscuta involves a novel strategy. (Received April 10, 1996; Accepted August 21, 1996)  相似文献   

8.
Experiments were conducted to determine the influence of glyphosate[N-(phosphonomethyl)glycine] on extractable nitrate reductaseactivity during light and dark growth of soybean (Glycine max)seedlings. Glyphosate (5?10–4 M), applied via root-feedingto three-day-old etiolated seedling, significantly reduced enzymeactivity in roots (48 to 96 h) and leaves (96 h) of seedlingsplaced in the light, but had little effect on enzyme activityin cotyledons compared to enzyme levels in tissues of untreatedseedlings. During dark-growth, nitrate reductase activity increasedwith time in cotyledons of untreated seedlings (activity about85-fold less than in cotyledons of light-grown plants) but muchlower enzyme levels were found in cotyledons of glyphosate-treatedseedlings after 72 and 96 h. In leaves of dark-grown seedlings,glyphosate reduced nitrate reductase levels by 95%. Most inhibitionof extractable enzyme activity occurred in newly developingorgans (leaves and roots) which correlates well with reportsthat glyphosate is rapidly translocated to these sites. However,the fact that glyphosate inhibits growth prior to lowering enzymeactivity levels indicates a secondary effect on nitrate reductase. (Received May 18, 1984; Accepted February 12, 1985)  相似文献   

9.
The effect of cycloheximide (10–5 M) and cordycepin (10–4M) used as protein and RNA synthesis inhibitors, respectively,on auxin action in noncellulosic ß-glucan degradationof Avena coleoptile cell wall was investigated. Both depressedauxin-induced ßglucan degradation of the cell wallas well as auxin-induced elongation and cell wall loosening,suggesting that the process of ß-glucan degradationof the cell wall is closely associated with cell wall looseningand that auxin enhances the activity of an enzyme for ß-glucandegradation through de novo synthesis of RNA and protein butnot through activation of the enzyme in situ. Kinetic studywith the inhibitors showed that RNA metabolism involved in ß-glucandegradation was stimulated by auxin treatment of only 15 minwhile a longer lag phase (about 1 hr) existed for the synthesisof the enzyme. (Received December 16, 1978; )  相似文献   

10.
Experiments conducted to determine the effects of leupeptin,a specific inhibitor of thiol proteinase, on extractable nitratereductase (NR) activity in leaves of Hordeum distichum duringdarkness revealed that leupeptin (0.01 mg.ml–1) appliedto detached leaves significantly reduced the loss of NR activity.At the same time it also reduced the formation of small cytochromec reductase species, which is a degradation product of NR complex,Upon nitrate induction, extractable NR activity increased butthe content of thiol proteinase decreased. This inverse correlationwas also observed upon transfer of nitrate-grown barley seedlingsto nitrate-free nutrient solution. Furthermore, cycloheximide(0.1 mg.ml–1) treatment of barley seedlings reduced thecontent of thiol proteinase and retarded the loss of NR activityunder noninducing conditions. These results suggest that invivo changes in NR content in leaves of Hordeum distichum arethe result of proteolysis by an endogenous thiol proteinase. (Received May 16, 1985; Accepted July 22, 1985)  相似文献   

11.
Hder  Donat 《Plant & cell physiology》1985,26(7):1411-1417
The calcium transport blockers, ruthenium red and lanthanumions, inhibit negative phototactic orientation in the acellularslime mold, Physarum polycephalum. Likewise, agents known toenhance calcium fluxes (caffeine and phosphatidic acid) affectphoto-orientation as well as trimethyl-phenyl-phosphonium$ whichimpairs electrochemical gradients across membranes. The resultssuggest that calcium fluxes are involved in the sensory transductionof phototactic orientation in this organism. The cation transportthrough the channels occurs passively along a previously establishedgradient built by energy dependent calcium pumps. Inhibitionof these pumps by poly-L-lysine also impairs phototactic orientation.The location of the calcium transport phenomena is discussed. (Received April 17, 1985; Accepted August 12, 1985)  相似文献   

12.
A short pulse of red light or continuous far-red light enhancedthe activities of acid and alkaline phosphatases over the valuesof the dark controls in 5-day-old etiolated seedlings of Sorghumbicolor. For 30 min after the red light pulse 100% of the red/far-redphotoreversibilities was maintained for the acid and 80% forthe alkaline phosphatases. Thereafter, the "photoreversibilityescape reaction" was fast, being completed within 180 min. Cycloheximideas well as 6-methyl purine markedly inhibited red light enhancementof the activities of the phosphatases, but chloramphenicol,lincomiycin and rifamycin SV were ineffective. In spite of photoregulationof both the phosphatases at the time of de novo synthesis, itappears that control of the acid and alkaline phosphatases maybe affected by two independent initial actions of phytochrome. 1 Present address: Biologisches Institut II, University of Freiburg,FRG. (Received August 4, 1984; Accepted April 3, 1985)  相似文献   

13.
Seminal roots of Zea mays L. show curved growth, i.e. waving,meandering and spiral growth, when water cultured. Root curvaturewas accelerated by exogenously applied indole-3-acetic acidat 10–9 M and gibberellic acid at 10–6M; this curvaturedisappeared when 10–7 M p-chlorophenoxyisobutyric acidwas added. Roots curved more when the tops of seedlings wereexposed to light than when the tops of seedlings were covered.These results suggest that auxin may induce root curvature. (Received February 29, 1980; )  相似文献   

14.
We were interested in determining whether the low protein contentof pea seeds (Pisum sativum L.) as compared to soya bean seeds(Glycine max L. Merrill) might be due to faster degradationof the pea storage proteins during development of the seed.Pea and soya bean cotyledons were subjected to a ‘pulse-chase’experiment using [3H]glycine in in-vitro cultures. In peas,legumin had a half-life of 146 days, while vicilin had a half-lifeof 39 days. There was no measureable degradation of soya beanstorage proteins. Even with the pea storage proteins, the half-liveswere so much longer than the maturation time of seeds that degradationof storage proteins could not account for the lower proteincontent of peas as compared to soya beans. The validity of theseresults was indicated by the finding that non-storage proteinshad much shorter half-lives and that omission of a carbon ora nitrogen source greatly accelerated degradation. Labelledglycine was found to be a good probe for protein turnover studiesbecause it was very rapidly metabolized. Glycine max L. Merrill, soya bean, Pisum sativum, L. pea, protein turnover, storage proteins, legumin, vicilin  相似文献   

15.
Enhanced sensitivity to caffeine is part of the standard tests for susceptibility to malignant hyperthermia (MH) in humans and pigs. The caffeine sensitivity of skeletal muscle contraction and Ca2+ release from the sarcoplasmic reticulum is enhanced, but surprisingly, the caffeine sensitivity of purified porcine ryanodine receptor Ca2+-release channels (RyRs) is not affected by the MH mutation (Arg615Cys). In contrast, we show here that native malignant hyperthermic pig RyRs (incorporated into lipid bilayers with RyR-associated lipids and proteins) were activated by caffeine at 100- to 1,000-fold lower concentrations than native normal pig RyRs. In addition, the results show that the mutant ryanodine receptor channels were less sensitive to high-affinity activation by a peptide (CS) that corresponds to a part of the II–III loop of the skeletal dihydropyridine receptor (DHPR). Furthermore, subactivating concentrations of peptide CS enhanced the response of normal pig and rabbit RyRs to caffeine. In contrast, the caffeine sensitivity of MH RyRs was not enhanced by the peptide. These novel results showed that in MH-susceptible pig muscles 1) the caffeine sensitivity of native RyRs was enhanced, 2) the sensitivity of RyRs to a skeletal II–III loop peptide was depressed, and 3) an interaction between the caffeine and peptide CS activation mechanisms seen in normal RyRs was lost. calcium ion homeostasis; excitation-contraction coupling; ryanodine receptor polymorphisms; muscle contraction  相似文献   

16.
Wolffia microscopica, a duckweed, flowers in response to a singlephotoinductive SD cycle of 16 h dark and 8 h light. Floweringin W. microscopica could be induced, under non-inductive longdays, by 8-hydroxyquinoline (8-HQ). Flowering was initiatedwith 10–6 M 8-HQ and maximum flowering (ca. 75%) was obtainedat 5 x 10–6M level. Flowering was accentuated furtherwhen plants, supplied with 8-HQ, were subjected to SD cycles. (Received September 13, 1985; Accepted December 4, 1985)  相似文献   

17.
When seedlings of Phaseolus vulgaris with leaves in the daytimeposition (almost horizontal to the ground) were turned upside-downduring the light period, their leaves moved upward away fromthe ground after about 20 min and ceased moving after about1.5 h. But when seedlings with leaves in the night time position(directed downward) were turned upside-down, their leaves moveddownward toward the ground after about 30 min and stopped movingabout 2 h later. Thus, Phaseolus primary leaves showed positiveor negative geotropic responses that correspohded to the darkor light period. This geotropic response of primary leaves was accompanied bythe redistribution of K+, Cl and NO3- in the laminarpulvinus. These facts suggest that the circadian endogenousclock that is assumed to exist in Phaseolus vulgaris has atleast two regulation echanisms; one which measures time andanother which determines leaf postition in relation to gravityby changing the ion distribution in the pulvinus (Received February 12, 1983; Accepted May 17, 1983)  相似文献   

18.
Biosynthesis of Purine Alkaloids in Camellia Plants   总被引:2,自引:0,他引:2  
The metabolism of [8-14C]adenine and [8-14C]hypoxanthine infour species of Camellia plants was investigated in relationto the synthesis of purine alkaloids, caffeine and theobromine.Young leaves of C. sinensis had the ability to synthesize caffeine,but in C. irrawadiensis, these labelled precursors were incorporatedinto theobromine, not caffeine. No synthesis of purine alkaloidscould be detected in C. japonica and C. sasanqua leaves. Conventional"salvage" and degradation pathways of purines were present inall species of Camellia plants examined. 1 Present address: Research Center, Mitsubishi Chemical IndustriesLtd., 1000 Kamisida-cho, Midori-ku, Yokohama, 227 Japan. (Received September 29, 1986; Accepted January 22, 1987)  相似文献   

19.
The distribution and partitioning of dry matter and photoassimilateof Lolium perenne was investigated under two light regimes providingphotosynthetically active radiation of 350 µmol m–2s–1 (low light treatment) or 1000 µmol m–2s–1 (high light treatment). Plants were grown at specificgrowth conditions in either soil or sand microcosm units tofollow the subsequent release of carbon into the rhizosphereand its consequent incorporation into the microbial biomass(soil system) or recovery as exudates (sand system). The distributionof recent assimilate between the plant and root released carbonpools was determined using 14CO2 pulse-chase methodology atboth light treatments and for both sand- and soil-grown seedlings.A significant (P  相似文献   

20.
Increase in fluence rates of white light over the range of 5to 80 µmol m–2 s–1 brought about a correspondingincrease in amounts of anthocyanin production in shoots of Zeamays L. seedlings. Roots also exhibited a similar relationshipbetween increased fluence rate and increased anthocyanin productionover the range of 5 to 40 µmol m–2 s–1 whereasfluence rates above 40 µmol m–2 s–1 broughtabout decreases in anthocyanin production. Rates of productionand amounts of accumulation of anthocyanin in both shoots androots were found to vary with the age of the seedlings at thetime of exposure to light. Age, fluence rates, anthocyanin, seedlings, Zea mays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号