首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell invasion is a tightly controlled process occurring during development and tumor progression. The nematode Caenorhabditis elegans serves as a genetic model to study cell invasion during normal development. In the third larval stage, the anchor cell in the somatic gonad first induces and then invades the adjacent epidermal vulval precursor cells. The homolog of the Evi-1 oncogene, egl-43, is necessary for basement membrane destruction and anchor cell invasion. egl-43 is part of a regulatory network mediating cell invasion downstream of the fos-1 proto-oncogene. In addition, EGL-43 is required to specify the cell fates of ventral uterus cells downstream of or in parallel with LIN-12 NOTCH. Comparison with mammalian Evi-1 suggests a conserved pathway controlling cell invasion and cell fate specification.  相似文献   

2.
3.
4.
5.
Li J  Greenwald I 《Current biology : CB》2010,20(20):1875-1879
Studies of C. elegans vulval development have illuminated mechanisms underlying cell fate specification and elucidated intercellular signaling pathways [1]. The vulval precursor cells (VPCs) are spatially patterned during the L3 stage by the EGFR-Ras-MAPK-mediated inductive signal and the LIN-12/Notch-mediated lateral signal. The pattern is both precise and robust [2] because of crosstalk between these pathways [3]. Signaling is also regulated temporally, because constitutive activation of the spatial patterning pathways does not alter the timing of VPC fate specification [4, 5]. The heterochronic genes, including the microRNA lin-4 and its target lin-14, constitute a temporal control mechanism used in different contexts [6-8]. We find that lin-4 specifically controls the activity of LIN-12/Notch through lin-14, but not other known targets, and that persistent lin-14 blocks LIN-12 activity without interfering with the key events of LIN-12/Notch signal transduction. In the L2 stage, there is sufficient lin-14 activity to inhibit constitutive lin-12. Our results suggest that lin-4 and lin-14 contribute to spatial patterning through temporal gating of LIN-12. We propose that in the L2 stage, lin-14 sets a high threshold for LIN-12 activation to help prevent premature activation of LIN-12 by ligands expressed in other cells in the vicinity, thereby contributing to the precision and robustness of VPC fate patterning.  相似文献   

6.
7.
8.
Cell autonomy of lin-12 function in a cell fate decision in C. elegans   总被引:6,自引:0,他引:6  
G Seydoux  I Greenwald 《Cell》1989,57(7):1237-1245
The lin-12 gene of C. elegans encodes a predicted transmembrane protein that controls a decision by two cells, Z1.ppp and Z4.aaa, between the anchor cell (AC) and ventral uterine precursor cell (VU) fates. We performed laser ablation experiments to demonstrate that specification of the VU fate of Z1.ppp or Z4.aaa depends on an "AC-to-VU" signal from the presumptive AC. We generated genetic mosaics in which defined cells lacked lin-12 activity. By correlating the fates of Z1.ppp and Z4.aaa with the lin-12 genotype of nearly every cell in these mosaics, we conclude that lin-12 function is VU cell autonomous. We present a model in which lin-12 functions in the receiving mechanism for the "AC-to-VU" signal leading to the specification of the AC and VU fates of Z1.ppp and Z4.aaa.  相似文献   

9.
10.
11.
During Caenorhabditis elegans hermaphrodite development, the anchor cell induces the vulva and the uterine pi cells whose daughters connect to the vulva, thereby organizing the uterine-vulval connection. Both the initial selection of a single anchor cell during the anchor cell vs. ventral uterine precursor cell decision and the subsequent induction of the pi cell fate by the anchor cell are mediated by the lin-12 gene. Members of the presenilin gene family can cause early onset Alzheimer's disease when mutated and are also required for LIN-12/Notch signaling during development. We have shown that, in C. elegans, mutation of the sel-12-encoded presenilin results in pi cell induction defects. By contrast, other lin-12-mediated cell fate decisions occur normally in sel-12 mutants due to the redundant function of a second C. elegans presenilin called HOP-1. We found that the sel-12 egg-laying defect was partially rescued by expression of the sel-12 gene in the pi cells. sel-12-mediated pi cell fate specification provides a useful system for the analysis of presenilin function at single cell resolution.  相似文献   

12.
13.
14.
15.
16.
Comparative studies of vulva development between Caenorhabditis elegans and other nematode species have provided some insight into the evolution of patterning networks. However, molecular genetic details are available only in C. elegans and Pristionchus pacificus. To extend our knowledge on the evolution of patterning networks, we studied the C. elegans male hook competence group (HCG), an equivalence group that has similar developmental origins to the vulval precursor cells (VPCs), which generate the vulva in the hermaphrodite. Similar to VPC fate specification, each HCG cell adopts one of three fates (1°, 2°, 3°), and 2° HCG fate specification is mediated by LIN-12/Notch. We show that 2° HCG specification depends on the presence of a cell with the 1° fate. We also provide evidence that Wnt signaling via the Frizzled-like Wnt receptor LIN-17 acts to specify the 1° and 2° HCG fate. A requirement for EGF signaling during 1° fate specification is seen only when LIN-17 activity is compromised. In addition, activation of the EGF pathway decreases dependence on LIN-17 and causes ectopic hook development. Our results suggest that WNT plays a more significant role than EGF signaling in specifying HCG fates, whereas in VPC specification EGF signaling is the major inductive signal. Nonetheless, the overall logic is similar in the VPCs and the HCG: EGF and/or WNT induce a 1° lineage, and LIN-12/NOTCH induces a 2° lineage. Wnt signaling is also required for execution of the 1° and 2° HCG lineages. lin-17 and bar-1/β-catenin are preferentially expressed in the presumptive 1° cell P11.p. The dynamic subcellular localization of BAR-1-GFP in P11.p is concordant with the timing of HCG fate determination.  相似文献   

17.
18.
19.
Singhvi A  Frank CA  Garriga G 《Genetics》2008,179(2):887-898
Understanding how neurons adopt particular fates is a fundamental challenge in developmental neurobiology. To address this issue, we have been studying a Caenorhabditis elegans lineage that produces the HSN motor neuron and the PHB sensory neuron, sister cells produced by the HSN/PHB precursor. We have previously shown that the novel protein HAM-1 controls the asymmetric neuroblast division in this lineage. In this study we examine tbx-2 and egl-5, genes that act in concert with ham-1 to regulate HSN and PHB fate. In screens for mutants with abnormal HSN development, we identified the T-box protein TBX-2 as being important for both HSN and PHB differentiation. TBX-2, along with HAM-1, regulates the migrations of the HSNs and prevents the PHB neurons from adopting an apoptotic fate. The homeobox gene egl-5 has been shown to regulate the migration and later differentiation of the HSN. While mutations that disrupt its function show no obvious role for EGL-5 in PHB development, loss of egl-5 in a ham-1 mutant background leads to PHB differentiation defects. Expression of EGL-5 in the HSN/PHB precursor but not in the PHB neuron suggests that EGL-5 specifies precursor fate. These observations reveal a role for both EGL-5 and TBX-2 in neural fate specification in the HSN/PHB lineage.  相似文献   

20.
LIN-42, the Caenorhabditis elegans homolog of the Period (Per) family of circadian rhythm proteins, functions as a member of the heterochronic pathway, regulating temporal cell identities. We demonstrate that lin-42 acts broadly, timing developmental events in the gonad, vulva, and sex myoblasts, in addition to its well-established role in timing terminal differentiation of the hypodermis. In the vulva, sex myoblasts, and hypodermis, lin-42 activity prevents stage-specific cell division patterns from occurring too early. This general function of timing stage-appropriate cell division patterns is shared by the majority of heterochronic genes; their mutation temporally alters stage-specific division patterns. In contrast, lin-42 function in timing gonad morphogenesis is unique among the known heterochronic genes: inactivation of lin-42 causes the elongating gonad arms to reflex too early, a phenotype which implicates lin-42 in temporal regulation of cell migration. Three additional isoforms of lin-42 are identified that expand our view of the lin-42 locus and significantly extend the homology between LIN-42 and other PER family members. We show that, similar to PER proteins, LIN-42 has a dynamic expression pattern; its levels oscillate relative to the molts during postembryonic development. Transformation rescue studies indicate lin-42 is bipartite with respect to function. Intriguingly, the hallmark PAS domain is dispensable for LIN-42 function in transgenic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号