首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ICAM2 maps to porcine chromosome 12   总被引:1,自引:0,他引:1  
  相似文献   

2.
Development of a single nucleotide polymorphism map of porcine chromosome 2   总被引:1,自引:0,他引:1  
Single nucleotide polymorphism markers are developed on SSC2, predominantly on the p-arm. Several studies reported a quantitative trait loci (QTL) for backfat thickness in this region. Single nucleotide polymorphisms were identified by comparative re-sequencing of polymerase chain reaction (PCR) products from a panel of eight individuals. The panel consisted of five Large Whites (each from a different Dutch breeding company), a Meishan, a Pietrain and a Wild Boar. In total, 67 different PCR products were sequenced and 301 SNPs were identified in 32,429 bp of consensus sequence, an average of one SNP in every 108 bp. After correction for sample size, this polymorphism rate corresponds to a heterozygosity value of one SNP in every 357 bp. For 63% of the SNPs, there was variation among the five Large Whites, and these SNPs are relevant for linkage and association studies in commercial populations. Comparing the Whites with other breeds revealed higher variation rates with: (i) Meishan, 89%; (ii) Pietrain, 69%; (iii) Wild Boar, 70%. Because many of the experimental populations to identify QTL are based on crosses between these breeds, these SNPs are relevant for the fine mapping of the QTL identified within these crosses.  相似文献   

3.
Integration of porcine chromosome 13 maps   总被引:2,自引:0,他引:2  
In order to expand the comparative map between human chromosome 3 (HSA3) and porcine chromosome 13 (SSC13), seven genes from HSA3 were mapped on SSC13 by fluorescence in situ hybridisation (FISH), viz. ACAA1, ACPP, B4GALT4, LTF, MYLK, PDHB and RARB. With a view to integrating this expanded comparative map with the existing SSC13 linkage map, we used the INRA-University of Minnesota porcine Radiation Hybrid panel (IMpRH) to localize more precisely and to order 15 genes on the SSC13 map, viz. ACPP, ADCY5, APOD, BCHE, CD86, DRD3, GAP43, PCCB, RAF1, RHO, SI, TF, TFRC, TOP2B and ZNF148. In this way, we were able to create an integrated map, containing 38 type I and 81 type II markers, by correlating the linkage, radiation hybrid (RH) and cytogenetic maps of SSC13. This integrated map will give us the opportunity to take maximal advantage of the comparative mapping strategy for positional candidate cloning of genes responsible for economically important traits.  相似文献   

4.
Porcine-specific polymerase chain reaction (PCR) and a pig–rodent somatic cell hybrid panel were used to map two members of the MyoD gene family. MYOD1 was assigned to pig chromosome 2 and MYF5 to chromosome 5.  相似文献   

5.
Zoo-FISH and somatic cell hybrid panels have earlier demonstrated extended synteny conservation between human chromosome 3 (HSA3) and pig chromosome 13 (SSC13). In the present study, eight human genes viz., ADCY5, CASR, COL7A1, COL8A1, ITIH1, RHO, SIAT1 and XPC, spread along the length of HSA3, were chosen for expanding the comparative map between the two chromosomes. Using human and rat cDNAs, or human- and porcine-specific PCR products as probes, 8 porcine lambda clones were isolated. After subcloning and partial sequence determination, identity of the clones with regards to the specific genes was established. The eight type 1 markers thus obtained were biotin labeled and FISH mapped to pig metaphase spreads. All lambda clones localized to SSC13. In combination with the hitherto published mapping data of coding sequences on SSC13, a preliminary comparative status depicting the relative organization of this chromosome with respect to HSA3 was developed. The comparative map thus obtained bears significance in searching for candidate genes of economically important traits mapped to SSC13.  相似文献   

6.
7.
We report here the localisation of BAIAP1 (13q24), HTR1F (13q45), PTPRG (13q23) and UBE1C (13q24) by fluorescence in situ hybridisation (FISH), and BAIAP1 (Swr2114; 21 cR; LOD = 11.03), GATA2 (Sw2448; 37 cR; LOD = 8.26), IL5RA (Swr2114; 64 cR; LOD = 3.85), LMCD1 (Sw2450; 61 cR; LOD = 4.73), MME (CP; 50 cR; LOD = 7.75), RYK (Swc22; 12 cR; LOD = 18.62) and SGU003 (Sw1876; 6 cR; LOD = 16.99) by radiation hybrid (RH) mapping to porcine chromosome 13 (SSC13). The mapping of these 10 different loci (all mapped to human chromosome 3; HSA3) not only confirms the extended conservation of synteny between HSA3 and SSC13, but also defines more precisely the regions with conserved linkage. The syntenic region of the centromeric part of SSC13 was determined by isolating porcine bacterial artificial chromosome (BAC) clones (842D4 and 1031H1) using primers amplifying porcine microsatellite markers S0219 and S0076 (mapped to this region). Sequence comparison of the BAC end sequences with the human genome sequence showed that the centromeric part of SSC13 is homologous with HSA3p24.  相似文献   

8.
9.
10.
11.
12.
13.
Mapping of quantitative trait loci on porcine chromosome 4   总被引:6,自引:0,他引:6  
A F2 population derived from a cross between European Large White and Chinese Meishan pigs was established in order to study the genetic basis of breed differences for growth and fat traits. Chromosome 4 was chosen for initial study as previous work had revealed quantitative trait loci (QTLs) on this chromosome affected growth and fat traits in a Wild Boar × Large White cross. Individuals in the F2 population were typed for nine markers spanning a region of approximately 124 c m . We found evidence for QTLs affecting growth between weaning and the end of test (additive effect: 43·4 g/day) and fat depth measured in the mid-back position (additive effect: 1·82 mm). There was no evidence of interactions between the QTLs and sex, grandparents or F1 sires, suggesting that the detected QTLs were fixed for alternative alleles in the Meishan and Large White breeds. Comparison of locations suggests that these QTLs could be the same as those found in the Wild Boar × Large White cross.  相似文献   

14.
15.
The objectives of this study were to assign both microsatellite and gene-based markers on porcine chromosome X to two radiation hybrid (RH) panels and to develop a more extensive integrated map of SSC-X. Thirty-five microsatellite and 20 gene-based markers were assigned to T43RH, and 16 previously unreported microsatellite and 15 gene-based markers were added to IMpRH map. Of these, 30 microsatellite and 12 gene-based markers were common to both RH maps. Twenty-two gene-based markers were submitted to BLASTN analysis for identification of orthologues of genes on HSA-X. Single nucleotide polymorphisms (SNPs) were detected for 12 gene-based markers, and nine of these were placed on the genetic map. A total of 92 known loci are present on at least one porcine chromosome X map. Thirty-seven loci are present on all three maps; 31 loci are found on only one map. Location of 33 gene-based markers on the comprehensive map translates into an integrated comparative map that supports conservation of gene order between SSC-X and HSA-X. This integrated map will be valuable for selection of candidate genes for porcine quantitative trait loci (QTLs) that map to SSC-X.  相似文献   

16.
Three polymorphisms were identified in a 1·6-kb fragment of the porcine calpastatin (CAST) gene and these polymorphisms were used for genetic linkage mapping. Linkage analysis revealed significant linkage of CAST to five microsatellites previously mapped to porcine chromosome 2; these microsatellites were S0010, S0226, Sw14, Sw395 and Sw776. A somatic cell hybrid panel was used to determine the chromosomal localization of CAST and the microsatellites S0091, S0226 and Sw395. All of these were localized to the region 2q2·1–q2·4.  相似文献   

17.
Angiopoietin-like protein 3 and -4 (ANGPTL3 and -4) are two members of angiopoietin-like proteins (ANGPTLs), which have the signature structure of the angiopoietin family but cannot bind to the TIE2 receptor. It has been reported that they both affect lipid metabolism by inhibiting the activity of lipoprotein lipase (LPL). Here we report the cDNA cloning, chromosome mapping and expression analysis of ANGPTL3 and -4 in pigs. Sequence analysis shows that ANGPTL3 contains an open reading frame of 1,389 bp, which encodes 462 amino acids, and ANGPTL4 contains a coding region of 1,239 bp, which encodes 412 amino acids. Porcine ANGPTL3 deduced amino acid sequence shares 83% and 73.7% identity with human and mouse, respectively, and ANGPTL4 shares 79.4% and 77.7% amino acid identity with human and mouse, respectively. Porcine ANGPTL3 and -4 were mapped to the 6q31-->q35 and 2q21-->q24 region, respectively, by radiation hybrid mapping. Tissue distribution analysis indicated that porcine ANGPTL3 mRNA was exclusively expressed in liver, and porcine ANGPTL4 was ubiquitously expressed with the highest abundance in white adipose tissue. Furthermore, the mRNA level of ANGPTL3 and -4 in liver and the mRNA level of ANGPTL4 in white adipose tissue were significantly higher in genetically obese pigs than in their lean counterparts. This is the first report of molecular cloning and characterization of ANGPTL3 and -4 in pigs, which will be helpful for a better understanding of the role of ANGPTLs in lipid metabolism.  相似文献   

18.
The sequence of a cDNA clone encoding porcine transthyretin (prealbumin) was used to develop polymorphic markers for the TTR locus. The single-strand conformation polymorphism (SSCP) detected is caused by a silent AIT mutation in the penultimate coding codon and can also be revealed as a SacI restriction fragment length polymorphism (RFLP). The TTR locus was mapped to chromosome 6q by segregation and linkage analysis with these polymorphisms. This assignment confirms the predictions of homology between human chromosome 18 and pig chromosome 6q2.5-2.6.  相似文献   

19.
A high-resolution radiation hybrid map of porcine chromosome 6   总被引:2,自引:0,他引:2  
A high-resolution comprehensive map was constructed for porcine chromosome (SSC) 6, where quantitative trait loci (QTL) for reproduction and meat quality traits have been reported to exist. A radiation hybrid (RH) map containing 105 gene-based markers and 15 microsatellite markers was constructed for this chromosome using a 3000-rad porcine/hamster RH panel. In total, 40 genes from human chromosome (HSA) 1p36.3-p22, 29 from HSA16q12-q24, 17 from HSA18p11.3-q12 and 19 from HSA19q13.1-q13.4 were assigned to SSC6. All primers for these gene markers were designed based on porcine gene or EST sequences, and the orthologous status of the gene markers was confirmed by direct sequencing of PCR products amplified from separate Meishan and Large White genomic DNA pools. The RH map spans SSC6 and consists of six linkage groups created by using a LOD score threshold of 4. The boundaries of the conserved segments between SSC6 and HSA1, 16, 18 and 19 were defined more precisely than previously reported. This represents the most comprehensive RH map of SSC6 reported to date. Polymorphisms were detected for 38 of 105 gene-based markers placed on the RH map and these are being exploited in ongoing chromosome wide scans for QTL and eventual fine mapping of genes associated with prolificacy in a Meishan x Large White multigenerational commercial population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号