首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

2.
A method is described for the isolation and purification of 6-phosphogluconate dehydrogenase from pig liver. The molecular weight is estimated at 83,000 and that of the subunits is 42,000 as determined by gel electrophoresis. The pH maximum is 8.5 in 50 mM glycine/NaOH buffer and from 7.5 to 10 in 50 mM phosphate buffer at 30 degrees. Magnesium ion is not required for activity and acts as an inhibitor at concentrations above 20 mM. A cellular fractionation study indicates that this enzyme is located almost entirely within the soluble portion of the cytoplasm. Kinetic studies have been done in 50 mM glycine buffer, pH 8.5, at 30 degrees. The data are consistent with a sequential mechanism in which NADP+ is added first, followed by 6-phosphogluconate, and the products are released in the order, CO2, ribulose 5-phosphate, and NADPH. The Michaelis constant is 13.5 muM for 6-phosphogluconate. Dissociation constants are 4.8 muM for NADP+ and 5.1 muM for NADPH.  相似文献   

3.
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was purified from mycelium of Aspergillus parasiticus (1-11-105 Whl). The enzyme had a molecular weight of 1.8 × 105 and was composed of four subunits of apparently equal size. The substrate specificity was very strict, only glucose 6-phosphate and glucose being oxidized by NADP or thio-NADP. Zinc ion was a powerful inhibitor of the enzyme, inhibition being competitive with respect to glucose 6-phosphate, with Ki about 2.5 μm. Other divalent metal ions which also serve as inhibitors are nickel, cadmium, and cobalt. It is proposed that the stimulation of polyketide synthesis by zinc ion may be mediated in part by inhibition of glucose-6-phosphate dehydrogenase.  相似文献   

4.
Michaelis-Menten kinetics are observed in studies of highly purified bovine adrenal glucose-6-phosphate dehydrogenase at pH8.0 in 0.1 M bicine. The Km for NADP+ is 3.8 muM and for glucose-6-phosphate, 61 muM. At pH 6.9 Km for NADP+ increases to 6.5 muM. The enzyme is inhibited by NADPH both at pH 6.8 and at 8.0 with a Kip of 2.36 muM at pH 8.0. Inhibition is competitive with respect to both substrates implying that addition of substrates is random ordered. The data are also interpreted in terms of "reducing charge", the mole fraction of coenzyme in the reduced form. This appears to be the major mechanism for regulation of the pentose shunt. D-glucose, oxidized by the enzyme at a very slow rate, is also a competitive inhibitor for the natural substrate with a Ki of 0.29 M. Phosphate is a competitive inhibitor for glucose-6-phosphate oxidation but both phosphate and sulfate accelerate glucose oxidation suggesting a common binding site for the two anions and the phosphate of the natural substrate. While binding of ACTH to our enzyme preparations has been observed, we have not been able, in spite of repeated attempts, to demonstrate augmentation of the activity of the enzyme by the addition of ACTH.  相似文献   

5.
Glucose-6-phosphate dehydrogenase [D-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 X 10(-4) M for glucose-6-phosphate and 2.4 X 10(-4) M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucose-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

6.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

7.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

8.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is inactivated by trypsin, chymotrypsin, pronase E, thermolysin, 4.0 M urea, and by heating to 49 degrees C. It is protected, to varying degrees, against all these forms of inactivation by glucose 6-phosphate, NAD+, and NADP+. When these ligands are present at 10 times their respective KD concentrations, protection by NAD+ or glucose 6-phosphate is substantially greater than protection by NADP+. A detailed analysis was undertaken of the protective effects of these ligands, at varying concentrations, on proteolysis of glucose-6-phosphate dehydrogenase by thermolysin. This study confirmed the above conclusion and permitted calculation of KD values for NAD+, NADP+, and glucose 6-phosphate that agree with such values determined by independent means. For NADP+, two KD values, 6.1 microM and 8.0 mM, can be derived, associated with protection against thermolysin by low and high NADP+ concentrations, respectively. The former value is in agreement with other determinations of KD and the latter value appears to represent binding of NADP+ to a second site which causes inhibition of catalysis. A Ki value of 10.5 mM for NADP+ was derived from inhibition studies. The principal conclusion from these studies is that NAD+ binding to L. mesenteroides glucose-6-phosphate dehydrogenase results in a larger global conformational change of the enzyme than does NADP+ binding. Presumably, a substantially larger proportion of the free energy of binding of NAD+, compared to NADP+, is used to alter the enzyme's conformation, as reflected in a much higher KD value. This may play an important role in enabling this dual nucleotide-specific dehydrogenase to accommodate either NAD+ or NADP+ at the same binding site.  相似文献   

9.
Glucose-6-phosphate dehydrogenase was partially purified from both glucose-grown and iron-glucose-grown Thiobacillus ferrooxidans. The enzyme possesses a dual nucleotide specificity for either nicotinamide adenine dinucleotide phosphate (NADP) or nicotinamide adenine dinucleotide (NAD) and has a molecular weight of 110,000 as determined by gel electrophoresis. Evidence is presented that T. ferrooxidans glucose-6-phosphate dehydrogenase is identical when isolated from cells grown mixotrophically (iron-glucose grown) or cells grown heterotrophically (glucose-grown cells). The enzyme is activated by Mg(2+), and to a lesser extent by low concentrations of Mn(2+). Reduced NAD inhibits the enzyme from T. ferrooxidans. No deviation from normal Michaelis-Menten kinetics was observed in velocity versus substrate concentration experiments. Adenosine triphosphate exerted a profound inhibition of the enzyme; the effect was 10 times more pronounced in the presence of NAD as compared to NADP. The physiological significance of this inhibition is discussed.  相似文献   

10.
Hexose-6-phosphate dehydrogenase (refers to hexose-6-phosphate dehydrogenase from any species in general) has been purified to apparent homogeneity from the teleost fish Fundulus heteroclitus. The enzyme was characterized for native (210 kDa) and subunit molecular mass (54 kDa), isoelectric point (6.65), amino acid composition, substrate specificity, and metal dependence. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucose 6-sulfate, glucosamine 6-phosphate, and glucose were found to be substrates in the reaction with NADP+, but only glucose was a substrate when NAD+ was used as coenzyme. A unique reaction mechanism for the forward direction was found for this enzyme when glucose 6-phosphate and NADP+ were used as substrates; ordered with glucose 6-phosphate binding first. NAD+ was found to be a competitive inhibitor toward NADP+ and an uncompetitive inhibitor with regard to glucose 6-phosphate in this reaction; Vmax = 7.56 mumol/min/mg, Km(NADP+) = 1.62 microM, Km(glucose 6-phosphate) = 7.29 microM, Kia(glucose 6-phosphate) = 8.66 microM, and Ki(NAD+) = 0.49 microM. The use of alternative substrates confirmed this result. This type of reaction mechanism has not been previously reported for a dehydrogenase.  相似文献   

11.
1. 6-Phosphogluconate dehydrogenase from rabbit mammary gland was purified to homogeneity by the criterion of polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The molecular weight of the subunit is 52 000. The enzyme was purified 150-fold with a final specific activity of 20 mumol of NADP+ reduced/min per mg of protein and overall yield of 3%. The molecular weight of the native enzyme is estimated to be 104 000 from gel-filtration studies. The final purification step was carried out by affinity chromatography with NADP+-Sepharose. 2. The Km values for 6-phosphogluconate and NADP+ are approx. 54 muM and 23 muM respectively. 3. Citrate and pyrophosphate are competitive inhibitors of the enzyme with respect to both 6-phosphogluconate and NADP+. 4. MgCl2 affects the apparent Km for NADP+ at saturating concentrations of 6-phosphogluconate.  相似文献   

12.
Hexose-6-phosphate dehydrogenase of rat liver microsomes was purified to an apparently homogeneous state with a recovery of about 36% using 8-aminooctyl Sepharose, DEAE-cellulose and 2′,5′-ADP Sepharose columns. This enzyme was insensitive to SH-reagent p-chloromercuribenzoate and oxidized galactose 6-phosphate, glucose 6-phosphate and glucose, with either NADP or NAD as an electron acceptor. The minimum molecular weight of this enzyme was estimated to be 104,000 in SDS-polyacrylamide gel electrophoresis in the presence of 2-mercaptoethanol.  相似文献   

13.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

14.
The steady state kinetics of pig liver glucose-6-phosphate dehydrogenase is consistent with an ordered, sequential mechanism in which NADP is bound first and NADPH released last. Kia is 9.0 muM, Ka is 4.8 muM, and Kb is 36 muM. Glucosamine 6-phosphate, a substrate analogue and competitive inhibitor, is used to help rule out a possible random mechanism. ADP is seen to form a complex with the free form of the enzyme whereas ATP forms a complex with both the free and E-NADP forms of the enzyme. The KI for the E-ADP complex is 1.9 mM, while the Ki values for the E-ATP and E-NADP-ATP complexes are 7.2 and 4.5 mM, respectively.  相似文献   

15.
Two major species of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) differing in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5'-triphosphate (ATP) were detected in extracts of Pseudomonas multivorans (which has recently been shown to be synonymous with the species Pseudomonas cepacia) ATCC 17616. The large species (molecular weight ca. 230,000) was active with nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) and was markedly inhibited by ATP, which decreased its affinity for glucose-6-phosphate and for pyridine nucleotides. This form of the enzyme exhibited homotropic effects for glucose-6-phosphate. The small species (molecular weight ca. 96,000) was active with NADP but not with NAD, was not inhibited by ATP, and exhibited no homotropic effects for glucose-6-phosphate. Under certain conditions multiplicity of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) activities was also noted. One form of the enzyme (80,000 molecular weight) was active with either NAD or NADP and was inhibited by ATP, which decreased its affinity for 6-phosphogluconate. The other form (120,000 molecular weight) was highly specific for NADP and was not susceptible to inhibition by ATP. Neither form of the enzyme exhibited homotropic effects for 6-phosphogluconate. The possible relationships between the different species of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase are discussed.  相似文献   

16.
Murine hexose-6-phosphate dehydrogenase has been purified from liver microsomes by affinity chromatography on 2('),5(')-ADP-Sepharose. The purified enzyme has 6-phosphogluconolactonase activity and glucose-6-phosphate dehydrogenase activity and has a native molecular mass of 178 kDa and a subunit molecular mass of 89 kDa. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucosamine 6-phosphate, and glucose 6-sulfate are substrates for murine hexose-6-phosphate dehydrogenase, with either NADP or deamino-NADP as coenzyme. This study confirms that hexose-6-phosphate dehydrogenase is a bifunctional enzyme which can catalyze the first two reactions of the pentose phosphate pathway.  相似文献   

17.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

18.
1. The reaction catalysed by glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate-NADP+ oxidoreductase, EC 1.1.1.49) from baker's yeast was studied in 42mM-glycylglycine buffer, pH7.4 at 25 degrees C, by initial-velocity studies and by the use of NADPH as a product inhibitor. 2. The reactions catalysed by both the soluble enzyme and a stable enzyme covalently attached to CNBr-activated Sepharose 4B probably follow an ordered reaction mechanism with NADP+ and NADPH as the leading reactants. 3. The kinetic constants obtained for the soluble enzyme lere: KNADP+m, 19 muM; KNADP+s, 23 muM; KNADPHs, 15 muM. Similar values were obtained for the immobilized enzyme. 4. The assay of the immobilized enzyme was done by using a micro packed-bed recirculation reactor, and the advantages of this technique are discussed.  相似文献   

19.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is irreversibly inactivated by the 2,3'-dialdehyde of NADP+ (oNADP+) in the absence of substrate. The inactivation is first order with respect to NADP+ concentration and follows saturation kinetics, indicating that the enzyme initially forms a reversible complex with the inhibitor followed by covalent modification (KI = 1.8 mM). NADP+ and NAD+ protect the enzyme from inactivation by oNADP+. The pK of inactivation is 8.1. oNADP+ is an effective coenzyme in assays of glucose-6-phosphate dehydrogenase (Km = 200 microM). Kinetic evidence and binding studies with [14C] oNADP+ indicate that one molecule of oNADP+ binds per subunit of glucose-6-phosphate dehydrogenase when the enzyme is completely inactivated. The interaction between oNADP+ and the enzyme does not generate a Schiff's base, or a conjugated Schiff's base, but the data are consistent with the formation of a dihydroxymorpholino derivative.  相似文献   

20.
The denaturation of eight purified yeast enzymes, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, alcohol dehydrogenase, beta-fructosidase, hexokinase and glucose-6-phosphate isomerase, promoted under controlled conditions by the free fatty acids myristic and oleic, is selective. Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1 oxidoreductase, EC 1.1.1.49) is extremely sensitive to destabilization and was studied in greater detail. Results show that chain length and degree of unsaturation of fatty acids are important to their destabilizing effect, and that ligands of the enzyme can afford protection. The denaturation process results in more than one altered form. These results can be viewed in the perspective of the possibility that amphipathic substances, and in particular free fatty acids, may play a role for enzyme degradation in vivo, by initiating steps of selective denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号